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INTRODUCTION

This experiment was conceived as the result of preliminary aerial
and shipbeard observations of turbid surface water patterns in estnary
and nearshore waters, largely of the San Francisco Bay system {Carlson .
and others, 1970; Carlson, 1971). San Francisc& Bay was emphasized
for this study bocause of the extensive investigations underway invelving
physical and chemical characteristics of water and suspended sedinent
(McCulloch and others, 1970). <The synoptic, small-scale coverage provided
by ERTS encounraged us to expand the study over the western coastline )
of Horth America from Alaska to Mexico (Fig. 1l). We feel that this study
have given us insight into coastal prcocesses of this region that would
have been wvirvtually unattainable any cthar way.

Due to the varied nature of.-the region and the investigations, the
studies are divided into indiﬁidual chapters in this report. The
areas and the respective chapters ’‘are shown on Figure 1. The first
chapters deal with Alaska and adjacent waters. Subsequent chapters
procsed south along the west coast from the Olympic Peninsula to
San Prancisco Bay. The report concludes with a short note about the
Mexican coastal zZene.

The principal ebjectives have been to evaluate sources and dispersal
patterns of suspended sediment in the nearshore zone, to obtain an overview
of nearshore circulation along the west coast, and to detexrmine the
resolution of ERDS imagery and the resultant application to studies of
coastal sedimeatation problems and processes.

This experiment was most successful in obtaining scasonal infoimation
abaut nearshore surface water circulation. The synoptic view of the
turbid coastal waters afforded by ERTS will be valuable for (1) choosing
the location of waste discharge effluents and dredge spoil disposzal sites,
(2) Getermining actions which will minimize harmful effects ol oil spills
and (3) facilitating cocastal zone planning and management.

The most Aifficult task attempted in this study was to relate
"water truth” o ERTS imagery. Many complications arose: (1) excessive
clouds or haze, (2) heavy seas, (3) dense, underexposed, positive
transparencies, (4) rapidly changing water properties which could not
be related to. features observable on the imagery, (5) scale prablems
(resclution was limited to fezatures >50-100 meters) and (6) the lag time
between the date an arca was flown over by the satellite and the date the
image was received by the investigators.
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Figure 1. Index map of study areas. Numbers indicate
chapters pertaining to the areas. Letters (a and b)
mark study areas not in report but to be appended.
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THE EVOLUTION OF ICY BAY, ALASKA
by

Tau Rho Alpha

A comparison of early sketch maps, Alaskan topographic maps and
ERTS imagery, suggests that Icy Bay developed in the past 175 years
as the ice front of Guyot and Tyndall glaciers receded. Icy Bay lies
at the foot of Mt. St. Elias in southeastern Alaska (Fig. 1) and is
bordered by three large glaciers: Guyot to the west, Tyndall to the
north and Malaspina, the largest glacier in Morth America to the east
(Fig. 2-35) (3hepard and Wanless, 1971, p. 411).

The present Icy Bay was named in 1913 by Tarr and Martin (1914);
however, as early as 1794 this area was visited by Vancouver (1798).
Vancouver's sketch map and the reports of Tebenkof (18532) and Topham
(1889} suggest that a bay existed to the east of the preseat Icy Bay
at the former outlet of the Yahtse River (Figs. 2 and 3). The con-
figuration of this bay, as depicted in figure 2, was based on these
ecarly reports, the onshore landforms of the Fformer delta of the
Yahtse River, the well-defined sand harriers and spits and the:
latoral moraines of the combined Guyot and Tyndall glaciers (Plafker
and Miller, 1958). Thesc morphologic features, particularly the
sand barriers and spits, are visible .on ERT5 imagery (Fig. 5}.

The maximum extent of the Guyot and Tyndall glaciers was based on a
sukmarine shoal and on the distribution of a glacial moraine adjacent
to tho present icy Bay (Fig. 1). This crascent-shaped surmarine shoal
has a relinf of 50 feet and is located just beyond the mouth of Icy
Bay. From acoustic seismic profiles taken in 1974 thore is avidence
that this shoal is composed of wmorainal material (Terry Bruns, 1974,
personal comm.) .

The development of Icy Bay parallels the recession of the combined
Guyot and Tyndall glaciers. The estimated withdrawal of the ice from
its maximum extent, as indicated by the submarine moraione, until the
1950~52 period created 280 sq. km. of bay. This withdrawal reached a
point in the 1930's where the two glaciers were no longer combined
{Fig. 3}.

The Icy Bay of Vancouver presumably was filled into elevations
above sea level hy glacial outwash from the Malaspina glacier through
the delta of the Yahtse River and by sandspits built into the east
side of the bay by the prevailing westerly longshore currents
(Shepard and Wanless, 1971, p. 416). The 1974 acoustic seismic profiles
of the Icy Bay area show no evidence for isostatic changes, glacial
rebound, or active tectonism that could account for the retreat of the
Guyot and fTyndall glaciers (Torry Bruns, 1974, personal comm.; George
Plafker, 1974, pdérsonal comm.). ' ’
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Figure 3. Tcy Bay as it appeared in 1950-1952. Based on four maps of the
U.S. Geclegical Survey, Alaska Topographic Series 1:250,000 (Bering
Glacier, 1950; Icy Bay, 1950; Mt. St. Elias, 1952, and Yakiutat, 1952).
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ERTS imagery of 1972 (Fig. 5) and 1973 depicts Icy Bay as having

developed four distinct inlets due to the recession of an estimated

kn2/yr'='100 sq- km of ice since 1950-1952 (compare figs. 3 and 1) .
ThL two inlets to the west have dnweloped from that part of the ice
front of Guyol glacier that is west of the Cuyot liills. There is a
lobe of Guyot glacier that flows on the east side of the Guyot Hills
that has developed into the smallest of the new inlets in Icy Bay.
The fourth inlet of Icy Bay has developed at the mouth of Tyndall
glacier at the base of Mt. St. Elias. Along with the development
of the new inlets, new headlands have been exposed as the ice front
receded. Except for the Karr Hills and the Guyot Hills, all of the
other headlands had been covered with ice previous to 1972 (compare
figs. 3 and 4). Another change illustrated by ERIS imagery is that
the Yahtse River flows divectly into Icy Bay and no longer flows
toward the carlier unnamed bhay which .is now completely filled up
(Fig. 4). This infilling process has left high and dry the sand
barriers and spits which were near the mouth of Vancouver's Icy Bay.
In the ERTS imagery the stagnant ice front of Malaspina glacier which
terminates onshore is not as spectacular as the abrupt tidewater
fronts of Guyot and Tyndall glaclers because the front of the
Malaspina is low and covered with pitted moraine and vegetation
(Plafker and Miller, 1958). Some of the larger pitholes and ice-
margin lakes are visible in the imagery. - '

SRTS imagery of southeastern Alaska was used by M. ¥, Meiex
(1973} to calculate a 3 sq. km ice loss in an l8-day peried at
the terminus of Hubbard glacier. This logs is the largest observed
in an Alaskan glacier in so shorni a tigs {(Meler, 1973). Thus large
scale ice yebreats which averaged 5 km' 2/yr during the evolution
of Tey Bay are reasonable..

An estimated growth of 380 sq km of bay has been documented by
early explorers, modern planimetric mapping and by ERTS imagery. ERTS
imayery provides a low cost, convenlent means of mapping the receding
ice front and documenting the rapidly changing coastal landforms in
this relatively inaccessible region.
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CIRCULATION OF NEARSHORE SURFACE
WATER IMN THE GULF OF ALASKA

Erk Reimnitz and Paul R. Carlson

As plans progress for increased use of nearshore waters in the
Gulf of Alaska (Fig. 1), more information is urgently needed regarding
- water circulatien. Potential areas of use and environmental conflict
include transportation {oil tanker traffic from valdez to lower 48
states), fisheries development and protection, and offshore drilling
and related activities. Although general information has bheen
published regarding the movemsnt of oceanic surface wabter in the Gulf
of Alaska {Fig. 2) data are sparse for the nearshore waters. Reasons
ara: relative inaccessability, formidable weather, and expense and
difficulty in obtaining synoptic data for nearshore waters. However,
ERTS provides a valuable tool.for a reconnaissance of these nearshore
waters,

The purpose of this chapter is to illustrate the usefulness of
ERTS imagery for the study of circulation of nearsurface water and the
dispersal of suspendsd sediment and deotrimental peliutants such as oil
in the nearshore waters of the northeastern Gulf of Alaska. The gecgraphic
area extends from Cross Sound and Glacier Bay in the southeast to
Prince William Sound and Valdez Arm in the northwest (Fig. 1)}. This
750 km long streteh of glaciated coast will ke discnssed in two units:
{1} Cross Scund to Kayak Island which contains small glacial streams
and two, large glacicrs which reach the open coast and (2) the Cepper
River Delta reglon which dominates the coastline hetween Kayak Island
and Prince William Sound. {(Also, see Chapter 2 on Icy Bay by Alpha,
this report.)

Interpretive Techniques

Imagery of southcentral Alaska was oktained for intervals during
the period of September 1972 to November 1973. Clouds, of course, _
obscured much of the scene on many passes; however, because a pass was
made every 18 days several clear images were obtained of most of this
coastal region in Septrember of 1972 and 1973 and images of wvarying
cloud cover and guality were obtained at other times of the year for
various segants of the caastal waters.

Cifcdlation patterns or flow directions of the near surface water
are inferred from the configuration of patterns of turbid water which
ara especially prominené in the nearshore zone during times of high
discharge from coastal rivers and streams. Along the coast of sonth-
central Alaska, discharge is highest during the summer and early fall
(Fig. 3} when maximum glacial melt occurs and the glacially fed streams
become brown due to the large quantities of glacial "flour" (fine silt
and clay) suspended in the water. For example, iHoskins and Burrell (1972)
reported a suspended sediment load of more than 1,000 mg/l in Glacier Bay

10
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where glacial streams entered the fjord. At these times of high
discharge, turhid water patterns are visable on KRTS imagery more than

50 km offshore {Fig. 4a). Each of the four bands of the multispectral
scanner system provided information of value. The plumé of suspended -
sediment discharged into the ccean is seen in greatest detail on the '
green band (0.53-0.6 pm) (Fig. 4a). The red band {0.6-0.7 um) provides

an outline of the main core of the plume (Fig. 4b), and the near infrared
band (0.7-0.8 um) shows only the immediate outlet position of the
effluents with highest sediment concentrations. The infrared band
(0-8-1.1 ym) {Fig. 4e) prevides the best penetration through atmospheric
haze and therofore most clearly delineates the shoreline. Use of all the
bands permits good definition of the effluents and provides a means to
detarmine distance and area covered by the plumes of suspended matter.
These plumes can be traced on the green band to at least 50 km distance
from the effluent. The greater water penetrating capability of the

green wave lengtiis accounts for the larger plume area visible on the
green band compared to the red band image, for as the suspended sediment -
moves farther from the effluent the sedimaent becomes more diffuse and
settles deeper in the water column.

Surface Currents: Cross Sound to Kayak Island

In addition to plume area and source, flow dirsclion of surface
currents can be inferved from the red and green bands of the ERTS imagery.
(Fig. 3). sSatellite imaycrvy from two succassive days, with a side overlap
of almoslt 0% at this latilude, shows plumes in the nearshore currents
sefting to the west, a direction consistent with the gyre made by the
Alaskan currenl. The current movemant, however, is complicated by changes
in winds and tides and by coastal morpholegy. The complex gyre shown on
the imagery of September 22, 1972 (Figs. 4a and 5) was produced by the
disrupting influence of Kayak Island. Complicatiocns in the surface water
flow can also be seen off the mouth of Icy Ray on the sketch made from
the Septemper 21, 1972 image (Fig. S). Subsegquent coverage of the nearshore
zone off Yecy Bay (Fig. 6) shows variations in the nearshore currents during
other times of the year. tote particularly the current gyre off the
Malaspina Glacier on October 9, 1972, resulting in an easterly flow about
30 km offshore and the confused flow patterns near Icy Bay on May 13, 1973.

Tmagery of the coastal zone from Cross Sound to Prince William Sound
was cbtained on eight successive, nearly cloud-free days in mid-September
of 1972 and five successive days in 1973 (Fig. 7). The nearshore patterns
of suspended sediment in this area suggest a zZone of convergence as the
flow directien is toward the southeast along the coast northwest of Lituya
Bay, but westerly aleng the shoreline southeast of the bay. However, this
pattern varies at other times of the year (Fig. 8). The influence of
islands such as Kayak, Hinchinbrook, and.Montague Island can be readily
seen on thessketeh (Fig. 7). Note especially the complex gyres set up
off Kayak Tsland. Evidence for the persistence, but changeability of
this complex gyre can be seen by comparing the September sketches (Fig. 6)
with ERTS images taken October 12, 1972 (Fig. 9), and August 14, 1973
(Fig. 10) of the Kayak Island gyre. Note that in September of both 1972
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Figure 4.

ERTS Multispectral scanner imagery of the southeastern

Alaska coastal zone between the Bering Glacier (left) and Icy
" Bay (right). Image date September 22, 1972; no. 061-20165.

a.

C.

Band 4 (0.5-0.6 um. Note the complex gyres of the
surface currents as shown by very turbid glacial
melt water.

Band 5 (0.6-0.7 um).

- Band 7 (0.8-1.1 pum).



SEPT. 22, 1972

Figure 5. Flow directions of surface currents in the nearshore
waters of the Gulf of Alaska on two consecutive days. Numbers.
. of the images used for the interpretation were September 21, '
1972; no. 1060-20111 and September 22, 1972; no. 1061~20165

(see Fig. 4).
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Figure 6. Surface current directions in nearshore waters of the
Gulf of Alaska off Icy Bay and the Malaspina Glacier as '
interpreted from ERTS green band imagery. Dates and identifi-
cation numbers of images are listed to the right of each panel.
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Figure 8., Surface current directions in nearshore waters of the
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Figure 9. ERTS green band image of well defined plumes of turbid

water off the Copper River (top center) and off Kayak Island
(right center). Image date October 12, 1972; no. 1081-20284.

ORIGINAL} p
OF POOR va

Figure 10. ERTS image (green band) of visually distinct plumes of
turbid water off the Copper River (top center) and off Kayak

Island (right center). Image date August 14, 1973, no. 1387-
20281.




and 1973, the plumes are deflected by the island into a counterclockwise
gyre and appear to be contained east of the island. However, in the
October 12, 1972 image the plume of turbid water loops around the south
and of the island in a clockwise motion toward Controller Bay. The flat
side along the northwestarn cdge of the plume appears to be the result
of a severe shear that had developed at that point in time. On the
August 13, 1973 image the clockwise eddy again was well developed, but
the prominent shear visible on the October 12, 1972 image was not
apparent. '

Copper River Delta Region

ERTS imagery of the Copper River Delta region in the Gulf of Alaska
provides information relating to {1} eirculation of the nearshore, near
surface water, (2} transport of suspended sediment and other pollutants
such as oil, (3) interaction of other sediment sources with the river,
{4) the effects of viver-borne sediment on the nearby Prince William
Sound, (5) delta changes due to the 1964 nlaska Earthguake. The imagery
is' interproted in the light of background information available from
previous studies in the area. ‘ P

In spite of a relatively small drainage basin, the Copper River,
with a sediment leoad of at least 97)(109 kg/vr (Reimnitz, 1968}, is one
of the Gulf of Alaska's major sediment sources. This 13 partly because
it is an alpine type river wilbh steep gradient, but more because all of
its major tribukaries are fed by glaciers, and much of the drainage basin
is mantled by ecasily crodible glacial deposits. Since the 1964 Alaskan
Farthgquake, when the delta veglon was uplifted by 2 meters, the proportion
6f river—borne sedimont entering the Guif of Alaska may be higher than
before, when the delta was undargoing slow subsidence (Reimnitz, 1966).

The hest BERTS imagery available for this study represents conditions
during the wonths of September and October. This is about 2 months after
peak river discharge (Fig. 3), but during the time of highest precipitation
in the coastal region.

rigurs 11 is an ERTS Multispectral Scanner image of September 24, 1972
showing the delta and inner shelf. The turbid river water is largely
restricted to the nearshore, and-is isolated by clearer water from another
turbid water plume to the east, originéting from the Bering Glacier. Some
suspended sediment can be traced in a plume frem the central part of the
delta toward the central shelf. Concentrations of suspended matter are
highest over the western part of the delta (Fig. 11b), and can be seen
extending westward into Prince William Sound. Using the approach outlined
earlicr, vectors were drawn that show the surface circulaticn patterns
(Fig. 12). The currents in the nearshore region are generally westward,
with a large eddy off the eastern delta, in the shelter of Kayak Island
which projects far into the gqulf. This diagram also shows that suspended
river sedimeft is transported from the delta inte the eastern part of
Prince William Sound. Two tidal inlets in the eastern part of the delta
show influx of relatively clear . oceanlc water into the tidal flat regions
{see arrows, Fig. 1lb; the image Fig. lla represents the end of flocd tide).
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Figure 11. Suspended sediment off the Copper River Delta.

a. Image date September 24, 1972; no. 1063-20282
(green band). !

b. Portrayal of density differences in the turbid
water. I2S Digicol was used to obtain the
numbers from a positive transparency of the
image shown in a. The higher the numbers, the
more turbid the water. The dashed lines outline
plume contacts wvisible on the image.
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Copper River

Figure 12. . Westward setting nearshore currents in the Gulf of Alaska off
the Copper River Delta. Interpreted from ERTS Multispectral Scanner
imagery recorded September 24, 1972 (no. 1063-20282). '
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Figure 11 shows changes ‘in the delta that are related to the 1964
EBarthquake. Reimnitz (1972) reported that the main discharge of the
river had shifted from a westerly to a ceéntral location on the delta
after the earthguake. This is shown by highly turbid water, indicative
of concentrations of suspended sediment, entering the Gulf through
centrally located tidal inlets. Related to this shift in distributaries
is a rapid buildup of tidal flats to an elevation that might lie abowve
mean high tide line in the central delta. When comparing this image
to 1964 data, a general accretion of the barrier islands is noted.
This probably also is related to the uplift of the delta in 1964.

Figqure 9 is an ERTS image of the same area taken on October 12,
1973, Conditions on this day are rather similar to those seen in the
Septowber 1972 image, except that the river supplied sediment is ,
restricted to a narrower zone near shore, and the open shelf has wvery
clear water. This image demonstrates two additional points that are
of importance for the sedimentary environment of the region. Large
amounts of suspended sediment supplied by the Bering Glacier east of
this image, are deflected seaward by ¥ayak Island. This sediment source
therefore has littlse influence on sedimentation in the Copprer River Delta
region, and deposits of sediments from the Bering Glacier may be found '
on the central shelf seaward of Kayak Island. Secondly, high
concentrations of suspended cediment arc being transported into Prince
William Scund not only [rom the della tidal flats dlrecLly, but als
from the open shelf through Einchinbrook Entrance.

Other images (FPig. 19} show rather similar dispersal pattorns,
except that under some conditlons turbid water from the Copper River gan
extend as for as the central wart of Prince William Sound, and westward
past Hichinbreek Entrance to the western end of Monlkague Island (Fig. 7).
Local sources of suspended sediment in Prince William Sound apparently
supply little sediment to the sound ceompared to the Copper River. '

Band 7 of the ERTS imagery taken at low .tide can be used to
delineate channel patterns on the Copper River Flats. These channels
are known to shift over short pericds of tiwe (Reimnitz, 1966}, and
bathymetric surveys in these areas are difficult to conduckt. Suitable
ERTS imagery therefore can be used as an aid in coastal navigation and
flbhlnq.

Modern sediment disperszal patterns seen on ERTS images agree well
with major dapocenters delineated by seismic reflection techniques.
Figura 13 is an isopach map of the modern Copper River (Reimnitz, 1966).
According to this diagram, deltaic sediments are restricted to the inner
shelf, and Tarr Bank is reported to be an erosional surface (Reimnitz,
1966G) . Offshore the delta i3 thickest west of the rivermouths, in the
direction of sediment fransport. Orca Inlet, a former [jord basin, has
Cbeen filled to tidal flat level, and a wedge of delftaic sediments has
been built northward into Prince William Sound beyond Hinchinbrook and
‘Hawkins Island. A seismic profile through Hinchinbrook Entrance (von
Huene and others, 1967) shows a -thick wedge of poust-glacial sediments
prograding from the open shelf into Prince William Sound. Reimnitz
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(1966) did not consider this sediment accumuplation as part of the Copper
River Delta. The ERTS imagery indicates that this sediment is part of
the Copper River Delta, and that deltaic sediment accumulations can alse
be expected along the seaward side of Montague Islarnd (Figs. 7, 9-12).

Conclusions

{1} The synoptic coverage afforded by ERTS indicates that overall
circulation in the nearshore near surface waters of the Gulf of Alaska
is counterclockwise at least during clear weather -- consistent with
the flow of the Alaskan gyre.

(2} The least cloud covered ERTS imagery of the southcentral hlaskan
eoastal zone was obtained during the period of August-Octcber. The large
number of cloudy days, the low sun angles in the winter, and the 18-day
cycle of the satellite greatly restricted additional coverage which is
nacessary in crder to obtain a more complets model of circulation. The
results shown here represent the infrequent fair-weather conditions. .

{3) Complicated flow patterns (flow reversals, complex qyrés, and
zone of convergence and divergence) develop within the nearshore zone
and can be soen clearly on the green and red bands of ERTS images. These
flow patterns are atfected by tides, winds and topography.

{4) During times ofF high discharge (maxivum glacial melkb) turbid
wvater is wisible on the gresn band isagery more than 50 km offshore.

{3) ERTS imagery indicates that the Copper River Delta is building
westward along the inner ghelf, and is filling Prince William Sound: local
saediment sources of Prince William Sound are small compared to the input
of Copper River sediments. -

(6) Major depocentors for post-glacial sediments agree with modern
sadiment dispersal patterns seen in ERTS imagery: very little of the
modern continental sediment reaches the outexr shelf today.

{7) Future spills of oil on the open shelf scuth of the Copper River
may have detvimental effects on Prince William Sound fisheries, however,
direction of surface current flow obtained from DRTS imagery will provide
knowledge of the most likely dispersal patterns of spilled oil and make
subsequent cleanup more efficient. and effective.

{8) Changes in the Copper River delta related to the 1964 Alaska
Earthquaie can be detected in the ERTS imagery. -

{2) Tidal channel patterns of the Copper River Flats can be

delineated f£rom ERTS imagery at low tide, and thus the imagery can be
used as an aid ko coastal navigation.
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ERTS IMAGERY AND DISPERSAL OF YUKON AND KUSKOWIN RIVER SEDIMENT IN THE
NORTHEASTERN BERING SEA

C. Hans Nelson, Bradley R. Larsen and Robert W, Rowland
U.S. Geological Survey, Menlo Park, California 94025

INTRODUCTION

Ninety percent of the total river sediment carried to the Bering
Sea enters from the Yukon and Kuskokwim Rivers. The Yukon annually
contributes about 96% of this, or approximately 96 million metric tons
of suspended and bedload sediment {(Lisitsyn, 1966). Part of the Yukon-
Kuskokwim sediment .is deposited in a large delta complex (52,000 km2)
that forms about 800 km of the Bering Sea coast between Kuskokwim Bay
and Norton Sound (Fig. l). The rest of the sediment is dispersed in a
complex pattern of deposition and bypassing on the epicontinental shelf
of the northeastern Bering Sea.

In this paper we present new data on the dispersal of modern
sediment near the effluents of the Yukon and Kuskokwim Rivers during
the ice-free season (June through October)., These data include
measurements of salinity and temperature, water turbidity, grain size
and concentraticn of suspended sediment, and grain size of hottom
sediment; these data are compared with Earth Resources Technology
Satellite (ERTS) images showing sediment plumes of the Yukon and
Kuskokwim Rivers {Figs. 1-6).

OCEANCGRAPHIC SETTING

Sediment from the Yukon and Xuskokwim Rivers is mainly dispersed
by the Alaskan Coastal Water. This water mass has low salinity (20~
30 °/o0) because it is generated primarily by Yukon and Kuskokwim
runoff (Saur and others, 1954)., The water mass parallels the esastern
Bering Sea coast and generally extends offshore to a depth of about
30 m (Fig. 1); it also fills Norton Scund. The entire water mass has
a net northward movement because of sea surface slope {(Coachman and
Aagaard, 1966).

Numerous non-synoptic measurements of current velocity taken
during different weather conditions of the ice free seascn indicate
that speed of the Alaskan Coastal Water is variable but movement
generally is northward {(Fig. 1). Typically, current speeds in the
seaward areas of the Alaskan Coastal Water are 10 ({(bottom) to 20
{surface) cm/sec. whereas within 30 kxm of the shoreline the entire
water column travels northward at velocities of 30-40 cm/sec. (Fleming
and Heggarty, 1966;: Husby, 1969; 1971; McManus and Smyth, 1970). The

‘maximum current speeds are found where the Alaskan coast protrudes
westward to constrict water flow at locations such as Bering and
Etolin Straits; here velocities reach 180 cm/sec. and 90 cm/sec,
respectively (Fleming and Heggarty, 1966; Fig. 1).
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figure 1. Northeastern Bering Sea study area showing late Quaternary
deltaic and flood plain deposit in the Yukon-Kuskokwim delta com-
plex, offshore water circulation {after Knebel and Creager, 1973;
McManus and others, in press), and maximum bottom current velocities
(selected from Fleming and Hegdarty, 1966; Husby, 1969, 1971; Knebel,
1972; and Nelson and Hopkins, 1972). Surface salinities for Kuskok-

wim Bay water measured August'BO and 31, 1972, for elsewhere on
September 1-7, 1972.
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Disruption of the dominant northerly flow occurs at the landward
and seaward fringes of the Alaskan Coastal Water. Reversals in current
directicons near the coast may result from local wind and tidal
fluctuations; reversals in the slowly moving water of the seaward
fringe appear to be caused by wind and tidal fluctuations and/or by
movements of other nearby water masses (Nelson and Hopkins, 1972;
Knebel and Creager, 1973; McManus and others, in preparation).

SUSPENDED SEDIMENT DISPERSAL

Discharge of suspended sediment from Arctic rivers takes place
principally in the summer when the land surface is thawed\YLisitsyn,
1966}, Therefore, although cohservations of suspended sediments have
been restricted to the summer months, the available data presumably
describe the bulk of the annual sediment discharxge. .

In the central Kuskokwim River, surface water contained suspended
sediment concentrations of 100-200 mg/l during non-flood discharge
conditions of late August, 1972 (Fig. 2). The concentrations dropped
to below 50 mg/l in the lower river near the first occurrence of
brackish water where there is a tidal effect (Fig. 1),

ERTS imagery of August 31 at the time of our coastal water
sampling, shows that the main Kuskokwim River plume occupied the
northern part of Xuskokwim Bay. The configuration of the plume seems
to suggest a westward movement of surface water along the northern
coastline of the bay and a general 'southerly movement of the plume in
the eastern part of the bay (Figs. 4 & 5 and Table 1). Inspection of
M$S Bands 5 and & indicate the greatest plume turbidity occurred along
the eastern coast in the northern end of Kuskokwim Bay. The greakest
sediment concentrations, coarsest suspended sediment, lowest salinities
and shallowest secchi disc observations all were made in water along
the northeastern coast of the bay (Figs. 1-3),

Other ERTS imagery suggests that this pattern may be persistent
in Kuskokwim Bay. Images in May of 1973 show the northern end of the
Bay filled by the sediment plume and also reveal a long westward
extension of part of the sediment plume along the northern shoreline
toward Cape Romanzof (Wright and Sharma, in press).

From Cape Reomanzof north-northeast toward the Yukon subdelta and
northwest toward St. Lawrence Island, patterns of currents, suspended
sediment concentrations, and sediment plumes in ERTS imagery are
diverse (Figs. 1, 2 & 4); these limited_data suggest that suspended
sediment movement is quite variable with time and water depth and that
data is insufficient to determine the dominant pathway of suspended
sediment dispersal in this area. Neiman (1961) reported a high
concentration of suspended sediment in bottom water both to the north-
northeast and northwest from Cape Romanzof (Fig., 2). Deposition from
such northwestward excursions of sediment laden water may be partly
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Figure 2. Distribution of suspended sediment in surface (A} and near bottom (B) water of northeastern

S Bering Sea and the Kuskokwim River. Selected data are included from Weiman (1961} and McManus and.

’ : smyth (1270). For her 50 samples, Weiman used membrane ultrafiltration at 0.7 v on 1-4 1. of water
(Lisitsyn. 1966, p. 167) in a method nearly identical to ours. Our grab samples were collected with
Van Dorn bottles and our filter handling and weighing procedure was after Winneberger, Austin and
Klett (1963). McManus and Smyth (1970} utilized a transmissometer te c¢ollect their data. Only our

Kuskokwim data was synoptic; it was collected throughout the lower .estuary from a helicopter on the
day of the ERTS imagery in Figures 4 and 5.
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Table 1. Dispersions of the sediment plumes measured from the Kuskokwim River mouth and frem the
southwest distributary of the Yukan River, which is the primary sediment source shown in the ERTS
Imagery (Fig. 5).

Distance to the furthest recognizable boundary of the lowest density part of plumes has been
measured on MSS Band 4 of ERTS imagery, Distance to the boundary of the highest density part of
plumes has been measured on MSS Band & of ERTS imagery. . )

MSS 4 MSE &

ERTS Imagery North East West  South North . East West South
Kuskokwim 1039-21371 ' - 35 km 120 km 105 km - 20 km 20 km 52 km
{31 RAug 72) : i : . . N
Tuken 1384-21530 ., 140 km 105 kn 60 km 70 km 90 km 95 km 60 km 65 km
11384-21533 - - :
(11 Aug 73)
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responsible for formation of St., Lawrence Bank, a shoal south of

St. Lawrence Island (Knebel and Creager, 1973). McManus and Smyth
{1970) believed northerly transport around the delta from the Kuskokwim,
best explained the high quantity of suspended sediment they noted in
bottem water north of Cape Romanzof. ERTS imagery, however, shows
southwesterly movement of a small part of the Yukon River plume from
‘the southwest distributary (Figs. 4 & 5). The dominant flow from this
main distributary apparently causes. some movement southwestward against
the surface and bottom currents that generally flow northward (Figs.

1 & 4). Thus, the high concentraticn of suspended sediment in bottom
water north of Cape Romanzof may originate both from dispersal of the
Kuskokwim River plume northwestward and Yukon River plume southwestward
along the delta margin.

Neilther ERTS photos nor available suspended sedigént data provide
a clear cut picture of Kuskokwim sediment dispersal to the south and
southwest, High suspended sediment concentrations noted by MNeiman
(1961) south of Kuskokwim Bay near Cape Newenham may have an origin in
part from a continued southerly dispersal of the Kuskokwinm plume (Fig.
2). However, these concentration gradients lead eastward toward
Mushagak Bay where other ERTS imagery (Summer, 1972) and suspended
sediment data {G. D. Sharma, Univ., Alaska, oral commun., 1974) reveals
a well developed sediment plume moving from the Bay toward this region.
Neiman's {(1961) contours of suspended sediment concentration southwest
of Nunivak Island, in addition, suggest that movement of Kuskokwim
sediment plumes may continue westerly at depth away from the delta
margin; but such a pattern is not visible on 1972 or 1973 ERTS imagery
of surface waters. G. D. Sharma (University of Alaska, oral
communicatien, 1974) also finds that chemical parametexs of Kuskokwim
water can be traced in this westerly to southwesterly direction.

The high stspended sediment concentrations in bottom water just
north of St. Matthew Island coincide with a major current gyre and a
relatively thick deposit of modern silt in that area {Fig. 1; Neiman,
1961; Knebel and Creager, 1973). It is speculative whether this
concentration of suspended sediment can be attributed to the movement
of Kuskokwim sediment into this central shelf area of slugygish water
circulation or whether resuspension of shelf sediment contributes to
these suspended sediment concentrations and modern silt deposits.

More of the synoptic coverage provided by ERTS imagery and more _
measurements of water hydrography and chemistry are necessary before
the major, variable dispersal paths of Kuskokwim derived sediment can
be traced in the central and southern Bering shelf areas.

The pattern of suspended sediment dispersal can be more clearly
defined for the Yukon River. ERTS imagery shows that turbid water
typically surrounds the modern subdelta in a wide halo and appears to
be carried northward and eastward within Norton Sound by a countexr-—
clockwise current gyre (Figs. 1, 4, & 5; Table 1). The ERTS imagery
from August 11, 1973, shows that although the wind drift is against
this typical circulation gyre, the Yukon plume extends northward and
castward from the most southwesterly distributary, the main discharge
point of the Yukon River (Figs. 4 & 5; Table 1). ‘ '
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The Yukon plume appears to disperse in two pathways through the
northern Bering Sea. It may travel directly northward from the Yukon
subdelta across the western side of Norton Sound to western Seward
Peninsula (G. D. Sharma, University of Alaska, oral communicaticn,
1974; McManus and others, in preparation) or it may follow the counter-
clockwise gyre that “"hugs" the coast of Norton Sound (Fig. 4). The
counterclockwise movement along the southern margins of Norton Sound
and Seward Peninsula is suggested by salinity and temperature data
(Fleming and Heggarty, 1966; Husby and Hufford, 1971; Fig. 1), by a
core of turbid bottom water with Yukon derived silt that paralled the
coastline in a 0~20 km wide zone near Nome in the early summer
{McManus and Smyth, 1970; Fig. 2) and by thickexr deposits of Holocene
silt at the margins of Norton Scund (Fig. 7). The low content of
suspended sediment that we recently encountered nedr Nome in the late
summer indicates that transport of large guantities- ‘of Yukon derived
silt may be intermittent because of seasonal changes and/or storms
(Fig. 2)- - )

GEOLOGIC IMPLICATIONS

The sediment discharge from Arctic rivers consists predominately
of silt (Hill and Tedrow, 1961; Lamar, 1966}, Analyses of suspended
sediment samples taken from the Kuskokwim River at the time of the
August 21, 1972 ERTS imagery show that 75% of the suspended sediment
is silt-sized throughout most of the river and the eastern nearshore
areas of Kuskokwim Bay where the most turbid plume 'is shown on ERTS
imagery (Figs. 4, 5, & 6; Table 1). To the west of the river mouth
along the northern coast of Kuskokwim Bay where a less turbid river
plume is evident, the concentration of silt drops to 30% {Figs. 2, 3,
5, & 6). The remainder of suspended material is made up of clay-size
material and organic debris. The predominance of silt in suspended
sediments of the drainage basins probably accounts for the high
percentage of silt and the generally lew percentage of clay both in
the suspended sediment of the Alaskan Coastal Water and in the modern
bottom zediment of the regions underlying the maln sediment plumes
shown in ERTS imagery (Flgs. 4, 5, & 7).

In locations where the distribution patterns of bottom sediment
are well defined, there appears to he good correlation with the’
distribution patterns of suspended sediment plumes that are shown in
ERTS imagery. Along the southern margin of the Yukon-Kuskokwim delta
complex where the Kuskokwim River plume parallels the shoreline, the
bottom sediment is dominantly modern silt (Figs. 4-6}. Seaward of the
vsilt belt", that underlies the main plume, waves shoal on discontin-
uous offshore bars of fine~grained sand {(Fig. 5). In these shallower
offshore regions silt and finer sized sediment apparently have been '
winnowed out, re- suspended, and carried off by the Alaskan Coastal
Water. :
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Figqure 6. Grain-size composition of suspended and bottom sediments of
the lower Kuskokwim River and upper Kuskokwim Bay collected August
30 and 31, 1972, WWeight percent of the <.062 mm size fractions was
determined by the hydrophotometer method of Jordan, Freyer, and
Hermen (1971) and of the >.062 mm size fractions by s;evxng at .062
mm for sand and at 2 mm for gravel. .

'

36 E



170° ice® 162" 150"

" SEWARD

PENINSULA

ALASKA

~fou°
64t~
v
< MODERN
/ YUKON
' SUBDELTA
D Y3
N
KEY
y NG LATE HOLOCENE
7 R;]/M T (£cocoB.P) YUKCH
5“(/// SEDIMENT THICKHMESS
{{,‘1/_‘,’//}// 7, =core [cr]=sEisric
* qpf/ ]
AREAL EXTENT OF
. YUKON-KUSKORKWIM |
LATE QUATERNARY 1°°
601~ DEPOSITS

YUKON=-KUSKORWIM
BOTTOM SEDIMENTS

SCALE
L i oA W '
o 50 100 KM . ‘
. ' -{58°
1 : } \
166° 162° 158*

Figure 7. Distribution and thickness of late Holocene (<6,000 BP) sandy
silt derived from the Yukon River. Sediment distribution pattern
after McManus and others (in press) and thickness data Ffrom unpublish-
ed seismic reflection profiling records and core stratigraphy deter-
mined by radiocarbon chronology (C. H. Nelson, U.S. Geological Survey,
Menlo Park, California ). '

37



ERTS images confirm the persistent movement of part of the
suspended sediment plumes with the Alaskan Coastal Water as it
travels westward between the Kuskokwim delta margin and the offshore
bars (Figs. 4 & 5) and then northward through Etolin Straits between
Nunivak Island and the delta margin (Wright and Sharma, 1973). More
images are required, however, to determine whether it is typical for
the highest concentrations of suspended sediment to move southward
along the eastern coastline of Kuskokwim Bay and to find out where
this major portion of the river sediment load may be deposited on the
shelf (Figs, 2, 4, & 5; Table 1}.

Distribution and thickness patterns of the late Holocene sandy
silt from the Yukon River correlate with the location and turbidity of
Yukon sediment plumes obscrved in ERTS imagery of the Bering Sea {(Figs.
4, 5, & 7; Table 1). Thick sediment undérlies both the northward and
coastal margin plumes whereas thin sediment underlies the east central
area of Norton Sound over which plumes have not been observed (Fig. 7).
Because the thinnest deposits have accumulated in the central
depression of Norton Sound, and the thickest deposits are associated
with positive topography, it appears that sediment plume dispersal has
been an important factor controlling depositional sites. The pattern
of bottom sediment distribution suggests that the locations of
sediment plumes shown in; the avallable ERTS images are typical and that
a significant part of the Yukon sediment plume moves in a counter-
clockwise circulation gyre of Alaskan Coastal Water along the margin
of Norton Sound (Fig. 1).

The capacity and duration of this circulation pattern in northern
Bering Sea is crucial to the understanding of Yukon sediment budgets
and the environmental impact of projected future devclopment in this
region. If most of the Yukon sediment followed the proposed dispersal
paths since major flooding of northern Bering Sea and opening of all:
straits about 11,800 B,P, (McManus and others, in press), then deposits
of vukon scdiment should be considerably thicker in regions of present
deposits or they should be present throughout other areas of northern
Bering Sea (Nelson and others, in preparation). There is an absence of
vukon sediment from St. Lawrence Island to Bering Straits and presence
of only thin deposits over large regions of east central Norton Sound
(Fig. 7). This lack of Yukon sediment in Bering Sea combined with the
circulation pattern evident in ERTS images suggest that great
quantities of Yukon sediment must eventually be carried northward from
the Bering Sea by the Alaskan Coastal Water. The generally northward
movement of much Yukon sediment into Chukchi Sea also is indicated by
the presence of relatively thick deposits of Holocene silt over
extensive areas of the eastern Chukchi Sea where there are no large
river inputs (McManus and others, 1969%9).

Mavement of the dense, turbid water wmasses through the north-
eastern Bering Sea has important implications for future mining of
offshore gold placer deposits (Nelson, 1971; Nelson and Hopkins, 1972)
and for projected harbor development associated with onshore mining
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facilities in this region, Offshore placer mining may introduce large
quantities of suspended sediment into the water, but this may be
insignificant in view of the large amounts of Yukon derived sediment
intermittently present in the water. The presence of high gquantities
of suspended sediment also must be taken into consideration so that

- future harbor design will avoid trapping such material.
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APPLICATION OF ERTS IMAGERY TO THE
INTERPRETATION OF THE GEOLOGIC FRAMEWORK OF THE
NORTHWESTERN OLYMPIC PENINSULA, WASHINGTON AND

THE SOUTH SIDE OF VANCOUVER ISLAND, BRITISH COLUMBIA

by

Parke D. Snavely, Jr. and Noxrman S. MacLeod

Detailed geologic mapping in the northwesternmost part of the Olympic
Peninsula and reconnaissance studies along the southern part of Vancouver
Island (figs. 1 and 2) have established the stratigraphic and tectonic
framework of the Tertiary sedimentary and volcanic rocks. Aerial photography,
flown by Washington State in 1971 at a scale of 1:12,500, is a valuable aid
to geologic studies in the northwestern Olympic Peninsula as the topographiec
expression of much of the terrane is geologically controlled. A late Pleisto-—
cene continental glacier overrode this region and scoured areas underlain by
soft sedimentary rocks leaving more resistant rock units in bold relieE.

Despite the high quality of the large scale aerial photography, however,
it does not provide the small scale synoptic view of a large reglion which is
available on ERTS imagery. Also this satellite imagery provides a geologic
overview of major geologic features, such as faults and rock units, that is
“important to regional geologic synthesis in regions that have besen mapped
only in a reconnaissance.

The ground resolution of the ERTS Imagery obtained in October 11, 1972
{no. 1030-18425, band 7} is such as to preclude interpretaticon of small scale
structures and stratigraphic details in Tertiary strata. The resolution of
equant features on the imagery is about 200 m, but islands 100 m across can
be detected because of their high contrast. Linear featurxes 50 m in width,
such as sequences of sandstone beds, are readily apparent on the Imagery.
Without previcus knowledge of the geology of this region, however, it would
be difficult in some cases to relate features on the ERTS imagery to geclogy.

U-2 black and white photography flown at 60,000 feet on July 11, 1973
has been compared with ERTS imagery data to evaluate the relative merits of
these two tools for geologic interpretation of forested areas such as that
present in the northwesternmost part of the Olympic Peninsula. The U-2
photography has much greater resolution as individual stratigraphic units
much less than 50 m in width can be traced in some detail in logyed off areas.
However, in areas covered by thick timber, large scale geclogic features are
more readily apparent on the ERTS imagery as the relief lS more accentuated
and a more synoptic view is provided.

- The principal geologic features that can be discerhed on the ERTS

1magery in the northwestern part of the Olympic Peninsula and on scukthern
vancouver Island are shown on the map in Figure 2 and are discussed

41



Figure 1. ERTS imagery of the northwestern part of the
Olympic Peninsula and the southwestern part of
Vancouver Island. Imagery obtained on October 11,
1972 (no. 1080-18425, band 7).

q2



Strait of
Georgia

Vancouver island B.C.

San Juan

Pert San Juan —=

sombrio Pt.

Ncah Bay

Cape '
Qligocene turbidites

Flattery

Claliam Bay

QOzette
' Lake

Fold belt in Crescent
Eoccne strata

Olympic Peninsula, Wash.

10 0 10 20 30 Km
Rt e &

- Figure 2. Principle geologic features that can be discerned on
ERTS imagery of the northwestern Olympic Peninsula and
southern Vancouver Island. Image was cbtained on Qctober 11,

1972 (no. 1080-18425, band 7).

§

Y3



bhelow.

A north-dipping thick (7,000 m) homoclinal sequence of interbedded
sandstone and siltstone of Eocene and Oligocene age exposed along the
northwestern Qlympic Peninsula is readily apparent on ERTS imagery because
of its banded ocutcrop pattern. Packets of turbidite sandstone, 50-100 m
thick, within Oligocene siltstone between Clallam Bay and Neah Bay are
particularly well shown. Small faults that cut these sandstone units can
be seen on the U-2 photography, but cannot be detected on the ERTS imagery.
However, broad folds in this banded sequence and large faults that cut iE:
can be detected on both,

The Pysht River Fault (Gower, 1960) that extends southwest from Pillar
Point on the Strait of Juan de Fuca is readily apparent on the imagery.
However, a marked linecation on the imagery extends southward beyond the
mapped trace of the fault suggesting that it extends 6 km farther to the
southeast. A large syncline in sandstone and siltstone east of the fault
and a broad northeast-plunging syncline west of the fault show prominently
on the image. North of Lake Crescent a marked northwest-trending lineation
extends from near the head of the Lyre River on Lake Crescent to the coast
near the mouth of the West Twin River. Although a fault was not mapped in
this area by Brown and others {1960), a review of their geologic map indicates
that a fault along the lineation on the image would explain numerous
structural anomalies in this poorly expased area.

The Tertilary sedimentary sequence overlies lower to middle Eocene
submarine basalt which forms a high rugged ridge that is well defined on
the image. - Along the south side these volcanic rocks are thrust over a
. structurally complex assemblage of broken and folded mega-blocks of
turbidite sandstone, siltstone, conglomerate, and mélanges composed of
these rocks and basalt. Field studies have shown that many of the large
"floating" blocks of sedimentary rocks measure 2-6 km in length and are
complexly folded. Although the fold patterns in these blocks cannot be
seen on either the 1:12,500 or U-2 black and white photography because of
the dense forest cover and the modification of the relief by glacial outwash,
a general pattern of folding can be detected on the ERTS image. One such
folded block composed of interbedded sandstone and siltstone can be inter-
mittently traced on the imagery along a sinuous path From Lake Ozette to
a point near Tyee Hill. Field studies in this area arxe not yet sufficiently
detailed to determine if the structural pattern suggested by the imagery is
real. However, the imagery does provide a valuable guide to where new field
studies should be undertaken to unrawvel the complex structure in this broken
assemblage of rocks. '

The most striking geologic features shown on the imagery are two large
faults along the south side of Vancouver Island. The Leech River Fault that
forms the boundary between Eocene basalts on the south and pre-Tertiary
phyllites on the north is clearly defined from Sombric Point on the Strait
of Juan de Fuca, eastward to near the city of Victoria. About 10 km noxth
of the Leech River Fault another major structure, the San Juan Fault, is
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clearly defined and extends from the strait just west of Port San Juan
across the entire southeastern tip of Vancouver Island to the Strait of
Georgia. UNumerous large scale west-trending lineations are readily
apparent in the central part of Vancouver Island and some lie along
faults mapped by Muller (1971}.

ERTS imagery of the northern part of the Olympic Peninsula and the
southern part of Vancouver is a valuable reconnaissance tool as it provides
an overview of major geologic features. Large faults which juxtapose
pre-Tertiary rocks of different litholegies on Vancouver Island are readily
apparent but faults of equal magnitude that cut the Tertiary sedimentary
rocks on the Olympic Peninsula cannot be discerned. Several faults with
small displacements that cut obliquely across the hedded Tertiary sequence
are clearly shown on the imagery. Thick bedded stratigraphic sequences
along the north side of the Olympic Peninsula can be traced along their
strike and around several large folds, but stratigraphic details in the
more massive units cannot be seen. The value of ERTS imagery in this study
area, and perhaps elsewhere, is inversely proportional to ones knowledqge of
the geologic framework as derived from surface mapping.
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SEASONAL  DISTRIBUTICN OF THE COLUMBIA RIVER EFFLUENT

by

Paul R. Carlson and T. John Conomos

Introcduction

The object of this chapter is to evaluate, using ERTS imagery, the
seasonal distribution and dispersal of suspended particulate matter of
the Columbia River effluent at sea. The green and red multispectral
scanner bands (MS5-4, 0.5-0.6 um and MSS-5, 0.6~0.7 um) of ERTS imagery
can be used to delineate turbid river water where it flows into the
coastal ocean (Carlson and others, 1973; Ruggles, 1973; Wright and
others, 1973). Interpretation of flow direction of the nearshore near-
surface water can be made from the dispersal patterns of the turbid
water (Fig. l; Carlson and Harden, 1973; Klemas and others, 1973). .The
repetitive, synoptic coverage afforded by ERTS provides a tool to obtain
supplemental seasonal data of the coastal circulation patterns.- Information
evaluated in such studies may be applied, in some cases, to predict the
behavior of particulate waste discharged into the coastal ocean. '

The ground truth discussed herein is taken mostly from previous work
(Conomos, 1968; Conomos and others, 1972a, b). ERTS imagery, sparse
because of cloudy skies, was used to delineate the gross seasonal shifts
in the effluent. ERTS was launched July 1972 and could have provided about
30 scenes of the Columbia River effluent, but in fact we have obtained only
4 useable scenes. The principal reasons for this paucity of useable images
are the perpetual overcast skies in this region, and the location of the
overpasses. The Columbia River mouth should have been visible on two
consecutive days of each 18 day segquence, but normally we received only
the image taken during the first day which did not cover more than about a
20 km wide strip of the ocean adjacent to the river mouth. The second pass
would have shown a larger part of the ocean, but for some reason this image
often was not obtained. The most likely explanation is that the satellite
sensors were turned off prematurely by at least one frame. ’

- Hydrographic Setting

The Columbia River

The Columbia River drains 670,000 km2 of the northeastern United
States and British Columbia (Fig. 2}, and has an annual mean discharge
of approximately'7,200 m3/sec {(Roden, 1967). This greatly dominates the
annual mean discharge (1,600 m3/sec) of the numercus small coastal rivers
of Washington and Oregon, which discharge directly inte the sea.
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There are usually two periods of maximum discharge per year in the
Columbia River (Fig. 3). WNormally, prolonged maximum flow occurs in
mid-May to mid~-June, and results from melting of snow which has accumulated
during winter in the mountains and in the interior. Maxima associated
with heavy rains or snow melts may occur at any time from November to
March. Early autumn is a low-flow period for the Columbia and all the
coastal rivers.

Heavy rain increases the winter runoff of the coastal rivers; their.
combined discharge, exclusive of the Columbia, accounts for about 40
percent of the total river discharge between the Strait of Juan de Fuca
and San Francisco Bay, while the Columbia contributes 60 percent (Barnes
and others, 1972). During late spring and summer, when the Columbia
runoff is at its maximum, these coastal rivers account for less than
10 percent of the total discharge along the Washington-Oregon coast, and
during early autumn they only account for about 5 percent of the total
discharge; the contribution of the Columbia is 90 percent and 95 percent
for late spring-summer and early autumn, respectively.

Although the annual average Columbia River dlscharge is 40 percent
that of the Mississippi, its suspended sediment load (6.4 x 109 kg/yx) -
is less than 2 percent; the average suspended solid concentration (40 mg/l)
is less than 3 percent of that of the Mississippi (Conomos, 1968).

The freshwater discharged by the river lowers the salinities of
surface ocean water and forms an_ identifiable pool of low-salinity waterx
(s £ 32.5 2/00) contiguous to the Columbia River mouth (Barnes and others,
1972; Conomos and others, 1972a). This pool extends offshore. southwest
of the river mouth in summer, and north along the coast in winter {(Figs. 2,
4} in response to the prevailing winds (Fig. 3} and suxrface currents. A
plume-like low-salinity pool is well developed and easily delineated
during summer because then the Columbia River discharge is' so much larger
than that from nearby cecastal rivers. The high discharge and the high
concentrations of suspended matter which enter the ocean at this time
provide a visibly detectable plume of turbid water (Pearcy and Mueller,
1969). However, during the summer of 1973, when ERTS had the potential of-
a synoptic overview of the plume of low-salinity turbid water, Columbia
River discharge was the lowest it had been for the past 15 yvears (Nichelas
Kallio, U.S. Geological Survey, oral communication, 1974, and therefore,
the areal extent of the turbid water plume was greatly reduced. In 1972,
however, shortly after launch of ERTS-1 imagery was received which showed
spatial distribution of the turbid water and the deflection southward of
this Columbia River effluent (Fig. 5a). A second image was obtained in
January, L1973 (Fig. 5b) which showed the river effluent deflected northward.
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The Northeast Pacific Ocean

Thé coastal northeast Pacific Ocean is characterized by relatively
weak (5 to 30 cm/sec) and seasonally variable surface currents (Barnes
et al, 1972). These include the southward-setting California Current, and
the nearshore Davidson Current, a coastal current which sets northward in.*
winter (Figs. 1, 5b) and reverses direction to the south in summer (Fig.
5a), becoming incorporated into the permanent California Current (Fig. 4).

Nature of Suspended Particulate Mattex

Suspended matter found in the river is primarily lithogenous, consisting
of discrete mineral grains and lithic fragments (Table 1). About 35 km
seaward of the river mouth (beyond the effluent; Figs. 1, 5), however, bio-
genocus matter constitutes the bulk of the suspended matter found in the
surface waters (Table l}.

Within 35 km of the river mouth, the type of biogenous and lithogenous
matter present in a water parcel changes; these changes are dependent upon
the spatial and temporal position of the parcel. Riverborne lithogenous
matter extends into these areas in the low-salinity effluent watex (Figs.

1, 5). The type and quantity of biogenous matter combined in a water parcel
is largely dependent on the spatial position of the water parcel (Conomos,
1968) . '

In the river, the suspended matter concentrations (Table 2) and the
{lithogenous) particle diameters are proportional to the river discharge.
The concentrations ranged from 8 to 40 mg/l; corresponding to monthly mean
river discharges of 4 to 14 x 103m3/sec, respectively (Conomos, 1968).

In the ocean, the median concentrations and ranges decreased with
distance from the river mouth (Table 2). Within 35 km of the river mouth,
a region dominated by the turbid plume of river watex (Figs. 1, S),
typical summer concentrations range from 2.5 to 4 mg/l; between 35 and
55 km, typical concentrations of 0.6 to 2 mg/l are measured. '

There are distinct temporal changes in the transition and cceanic
areas. Within 35 km of the river mouth, the variations are tidally
dependent, with the highest concentrations associated with the low-salinity
water, the turbid water of the river effluent {e.g. Pigs. 1, 5). Seaward,
variations are longer term, with late summer concentrations generally higher
than early-summer concentrations (Table 2). B : '

Conclusions

Although no "water truth" was obtained offshore of the Columbia River
 when useable satellite images were obtained, comparison of river effluent
patterns visible on ERTS images with previous measursments suggest that
ERTS imagery is a useful teool to provide synoptic coverage. There is
enough contrast between low-salinity- river effluent and ambient ocean.
water to allow the effluent to be readily visible and thus-mappable.aaa.;
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-~ modified after Conomos, 1968 .

Table 1. Typical values of bulk composition and particle diameters-a-/

Area ' Biogenous Matter ] Lithogenous Matter

: Particle Diameters

Fraction of total  Phytoplankton Detritus/Living Maximum Modal

{% by volume) (% maxine) ' {u) ()

"River . 5-15 o ' <1, 100 ~ 200 4 - 40
<35 km seaward of river 5 - 95 10 ~ 100 al 20 - 70 4 - 50
- T - * L " . } .

>35 km seaward of river 70 - 95. ’ 95 ">l .

<4 <4

a/

o0
=K
o G
2
gt"
lgw)
=2 .
CE S
=)
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Table 2. Typical suspended particulate matter concentratlons as functlons of
river discharge and geographical area’

'Suspended Particle Concentration

(mg/1)
River Discharge 35 km 35 km
(103 m3/sec) river from river from river?’
11-20 June 1965 T 14 40 _ 4 0.6
14-26 September 1965 4. — ‘ 3 2
15-20 June 1966 | 10.5 . 15 2.5 1
113-23 August 1966 Fo o 8 4 1.5

a/

— data from Conomos, 1968

.b/>35 km, but <55 km from river mouth
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The imagery could provide needed continuity between sampling points and
could very likely provide the information necessary to explain the many
Apparent andémalies obtained in a-single or even multiple vessel. survey
of such a rapidly changlng env1ronment.
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DISTRIBUTION, ABUNDANCE, AND COMPOSITION OF SUSPENDED PARTICLES
IN THE SAN FRANCISCO BAY SYSTEM, APRIL AND JULY 1973

. by _ . .
P. R. Carlson, T. J. Conomos, H. J. Knebel, D, H. Peterson,
E. P. Scrivani, R. E. Smith, W, C. Todd, 8. M. Wienke

INTRODUCTION

This research evaluates the distribution, abundance, and composition
of suspended particles in an estuarine environment. The information
gained allows us to predict the behavior of man made and naturally
occurring suspended particles.. The San Francisco Bay system was chosen
as the study area because much oceancgraphic data {i.e., water properties
and movement, biota and sediments) had been collected in this system.

The following aspects of suspended matter were studied:

(1) Determination of the concéntrations of suspehded-partiéles in’
near-surface waters with emphasis on the temporal and spatial distribution
as related to water properties and structure,

(2) Determination of the bulk clay mineral composition of the
lithogenous fraction of the near-surface suspended particles.

(3) Determination of the species composition and cell numbers of
phytoplankton in near-surface waters.,

Spring and summer were chosen for the study, as then, the effects
of high winter river discharge are diminishing and phytoplankton
production is increasing towards the summer maximum. Although observations
were planned in conjunction with ERTS cverflights, cloudy skies frequently
disrupted plans; lmagery often provlded clear coverage cof only a portion
of the bay system,

Previous Work

Past investigations concerned with the San Francisco Bay region
presently are being compiled by the U.S. Geological Survey. The
seasonal oceanographic framework of the adjacent ocean was briefly
described by Conomos and others (1970a).

Investigations of the nontidal surface and near-bottom were made by
Conomos and others (1370b, 1971).. Investigations of physical processes
occurring within the survey area include those of McCulloch and. others
(1970) who described south bay flushing as related to river discharge, and
Peterson and others (1974a) who described the null zone in north bay.
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Carlson and McCullech {1974) described variations in circulation of surface
waters based on aerial observations.

Descriptions of the water chemistry in north bay include those of
Conomos and Peterson (1974) and Peterson and others (1974b}. These
studies of water chemistry have been complemented by studies ¢oncerned
with the production of phytoplankton as related to hydrography (Scrivani, 1974).

Interest in the abundance, composition, and distribution of suspended
particles in the oceans has increased in the last three decades because
of the importance of this matter as a potential source of food for marine
organisms. Investigations of suspended matter include world-wide surveys
typified by those of Jerlov (1953) and Lisitsin (1962) and regicnal
surveys of Manheim and others (1970, 1972).

Investigations of inorganic fraction have traditionally emphasized
sedimentary processes. Suspended sediment concentrations of many major
rivers have been monitored (for example, Dole and Stabler, 1909). Studies
of estuarine sedimentary processes were summarized by Postma {1967), Schubel
{1968}, and Meade (1972). Studies of the distributions of particulate matter
in major river effluents at sea include the Mississippi (Scruton and
Moore, 1953}, the Orinoco (van Andel and Postma, 1954}, and the Columbia
(Conomos and Gross, 1972). Carlsen and Harden (this volume) have described
some variations in the San Francisco Bay effluent as it is dispersed in the
adjacent Pacific Ocean. Studies of mineral composition of particles
suspended in the open ocean include those of Ishii and Ishikawa (1964),
Jaccbs and Ewing {1965), and Manheim and others (1972}).

Regional Setting
Climate

The climate is characterized by mild wet winters and cool foggy summers.,
Precipitation is highly seasonal with 90 percent of the annual precipitation
usually occurring from November through April (Rantz, 1971}. Prevailing
summer winds are from the northwest and west; the winter winds, generated
by storms, are from the southeast to south.

Hydroloqy

More than 90 percent of the mean annual river dlscharge (840 m /sec)
entering the bay system is contributed to north bay by the combined inflows
of the Sacramentc and San Joaguln rivers (Fig. 1; McCulloch and others, 1970Q);
about 5 percent is contributed directly igto south bay by the small local
streams. This mean annual discharge, 4 m /sec, is less than that of the
wastewater flows, 10 m3/sec (220 million gallons/day), contributed directly
into south bay by the heavily populated surrounding communities (Hines,
1973). High river runeoff occurs during the winter months and reflects the ‘
high precipitation in the drainage basin.
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Hydrography

The diurnal tidal range varies from 1.7 meters at Golden Gate to
2.7 meters at the south end of the bay system (U.S. Coast and Geodetic
Survey, 1973}. Waves generated in response to high winds and the long
fetch within the south bay play a significant role in sediment transport.
The observed frequency of wave heights of 0.5 to 1 meter is at least 50
percent (Conomos, 1963).

The water turbidity, expressed as Secchi disc depths, typically ranges
from less than 0.25 m in the shallow areas to over 3 m in the channels
nearest Golden Gate. The high turbidity is caused primarily by wave and
current resuspension of fine-grained sediment in the shallow areas. In
north bay, river-borne suspended particles are a dominant factor in
increasing the turbidity. In south bay, secondary sources of turbidity
are the streams and sewage effluents, and low-salinity high turbidity
‘river water transported southward from north bay (McCulloch and others,
1970; Carlson and McCulloch, 1974).

Dilution of Pacific Ocean water by Sacramento-San Joaguin river
discharge decreases the salinity and increases the turbidity in north bay.
In south bay, the small streams and wastewater flows have only local effects
in decreasing the salinity {(McCulloch and others, 1970), Water salinity wvaries
greatly both spatially and seasonally. At Golden Gate, for example, '
winter salinities typically range from 18 to 26 ©/o0 and reflect the high
river inflows, while summer salinities are somewhat higher, ranging from
29 to 32 ©/00. Salinity stratification is present during winter (vertical
differences of up to 10 ®/0o) in most portions of the bay system, In the
south bay during summeyr, however, little low-salinity water is present and
the water column is well mixed by tidal currents and wind generated waves.

Water temperatures vary seasonally and are generally controlled by
ocean and river water temperatures and insolationneffects. In the
channels, typical winter temperatures are 7 to 9 C; summer temperatures
often exceed 20° C.

Circulation

Circulation is controlled by tidal and nontidal water movements. Tidal
currents, often in excess of 100 cm/sec, mix and move water, which in turm
transports and resuspends bottom sediments. Nontidal circulation, generated
by water density differences and wind is generally less than 10 cm/sec
{(Conomos and others, 1971}, For describing this nontidal circulation, the
bay system can be divided into {1} a north bay--central bay--Gulf of the
Farallones region that demonstrates a permanent circulation cell typical
of a partially mixed estuary, and (2} a south bay region that has seasonally
reversing but sluggish near-bottom and surface currents (McCullech and others,
1970; Conomos and others, 1971).



Perennial estuarine circulation in north and central bay and the
adjacent ocean is maintained by Sacramento-San Joaguin River runoff,
This runoff, mixed with ocean water, forms a turbid low-salinity low~density
upper layer which moves seaward (Fig. 2). Ocean water at depth moves .
toward the river to replace ocean water which has been entrained or mixed
upward into the surface outflow.

In contrast to north and central bay, south bay does not exhibit
normal estuarine circulation, but instead experiences seasonally
reversing surface and near-bottom nontidal currents. The role of nontidal
circulation in transporting suspended sediment in south bay is unknown.

METHODS AND MATERTIALS
Field Methods

Samples were collected and observations made during April and July
1973 ecruises of the g{E_Polaris to coincide- approximately with ERTS
overflights, The observations were made within either a one- {(July)
or two-day (April) period at 36 stations in the midchannel of the bay
system between the fresh-water boundary and the southern end of south
bay {Fig. 1).

Analyses were made with a continuous-flow system in which the water
was pumped from 2 m to the ship through a towable salinity-temperature-
depth pumping system (Beers and others, 1967). Simultaneous continuous
. determinations of turbidity were made (Schemel, this volume).

Discrete water samples were drawn for studies of phytoplankton cell
counts, particle counts, particle mass determinations, and x-ray
diffractometric analysis. For gravimetric and x-ray diffractometric
determinations of the suspended particles, between 250 and 750 ml of
water were filtered through silver membrane filters with a 0.45 u pore
diameter. The filters were subjected subsequently to gravimetric,
microscopic, and x-ray diffractometric analyses., Procedures for collection
and presentation of phytoplankton are similar to those of Vollenweider
(1969} .

Analytical Metheds

Salinity was determined by -conductivity measurements {Brown and
Hamon, 1961). The turbidity was measured by transmissometric techniques
(Jerlov, 1968),

To minimize centamination and sample loss, the salt was not rinsed
from the filters. The concentration of suspended particulate matter
was calculated from the weight differences between the tare weight of
the filter and the filter with air-dried suspensate, divided by the
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volume of water filtered.

These filters were then cut in half; one half was subjected to
X-~ray diffractometric analysis, and the other half was examined by scanning
electron microscopy (SEM). For the X-ray diffractometric analyses of the
crystalline constituents of the suspensate, a NorelcoR X-ray diffractometex
was used with nickel-filtered copper Ko radiation and a Geiger detector.
For each sample, four X-ray diffraction spectra were obtained: air dried,
glycolated, and heated at 400° C and 550° C according to the method of
Hathaway (1956). ' ’ -

For SEM analysis, approximately ©.25 cm2 of the silver filter with
suspensate was glued on a cylindrical specimen stub, The specimen was
then coated under vacuum with vapor generated from a 60-40 percent gold-
palladium wire. The sample was then viewed on a cathode ray oscilloscope
at 700 and 5000x magnification, Desired images were photographed for
future study.

For determination of particle numbers and volumes, water samples
ware immediately analyzed with a Coulter® particle counter (Sheldon
and Parson, 1967). The sample was mixed by shaking and swirling; L50-200
ml were poured into the instrument beaker and stirred continuously during
measurements. Each analysis was conducted twice through a 200-u aperture
tube, so that the counts on a 2-ml volume were measured and also until
a desired nunber of particles had been counted. Particle-free salt solution
was added if necessary to insure that either there was sufficient
electrolyte present for maintenance of the electric field, or that the
sample concentration was low enocugh to minimize sample counting errors
caused by coincidence factors {Sheldon and Parsons, 1967); any errors introduced
by coincidence factors were not corrected. A ragweed pollen standard was
frequently used for instrument calibration.

Procedures for phytoplankton species.identification and cell counts
are similar to those of Strickland (1966} and Lund and others (1958). .

RESULTS
Water Characteristics

Salinity and Temperatures

The temperatures of the near-surface (2 m} waters were controlled by
successive admixtures of warmer river water and cooler ocean water (Fig. 3).
There was significant warming of estuarine waters between April and July;
river temperatures rose 6°C from 16 to 22°C, whereas the ocean temperatures
rose 3°C from 12 te 15°C, :

The salinities of both ocean and bay waters increased from April to
July; at any given station salinities increased from 3 to 5 “/oo. Salt water
{(>1 ©/o00) intruded several kilometers landward in the estuary (Fig. 3) from
April to July. '
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Figure 3. Longitudinal distribution of salinity and temperature at 2 m measured during April and July

sampling cruises, from Rio Vista (RV) to Golden Gate (Sta. 19) in North Bay and Sta. 21 to Sta. 36

in South Bay (see fig. 1 for station locations).



Turbiditx

The water turbidity, as measured by a transmissometer, showed a generally
similar distribution for both April and July (Fig. 4). The most turbid
water was found in north bay between stations 2 and 12 (Fig., 5) and at the
southern end of south bay (stations 31 te 36; Fig, 2). It should be noted
that this north bay water at 2m depth {stations 2 to 12) is more turbid than
that contributed by the rlver, and that the zone of highest water turbidity
shifted landward in July. The highest turbidity area was located between-
stations 7 to 1l during April and stations 2 to 7 during July. The least
turbid water was found in central bay (stations 14 to 23). The bay water at
2 m was generally more turbid during April than July.

Suspended Particle Characteristics

Nature of particles
There are two different types of suspended particles:

(1) 1lithogenous: inorganic and generally crystalline; ultimately'
derived from the erosive weathering of rocks and transported to the bay
system by fluvial processes;

{2} biocgenous: particles formed by organisms; organic in nature,
they may be either living {(phytoplankton and zooplankton) or noniiving
(organic detritus} (Parsons, 19637. This biogenocus matter can be
riverborne (contributed directly by the river) or ambient (formed in the
oceanic and estuarine areas).

Riverborne suspended particles, are primarily lithogenous, consisting
of discrete mineral grains and lithic fragments (Fig. 6, 8). The remaining
fraction includes both living and detrital biogenous matter., The living
portion is principally phytoplankton in the form of diatoms {Scrivani,
1974). The organic detritus is mainly plant fibers {(Figs. &, 7,8, 9).

Near Golden Gate biogenous matter constitutes the bulk of the suspended
particles (Figs. 7, 3) and consists of small standing stocks of phytoplankton,
with diatoms predominating (Scrivani, 1974). The organic detritus is
mainly fecal pellets, wood fibers, and fragmented plant cells,

The type of biogenous and lithogenous particles present in a water

- parcel change depending on the spatial and temporal position of the parcel.
Riverborne lithogencus matter extended further seaward in the low- sallnlty
water during April than during July (Fig. 10}.

Particle concentrations i

Particle concentrations weré greatest in north bay, having maximum values
of 140 mg/l (Fig. 11);: the lowest concentrations (10 mg/l) were at Golden
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Figure 5. Turbid water in the eastern half of Carquinez Strait
and the western half of Suisun Bay. Infrared photograph
(690-760 nm) from U-2 aircraft at altitude of ~21,000 m,
April 3, 1973, (flight no. 73-051; accession no. 1057-0159).
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Figure 6. Typical suspended matter (2-m depth) viewed with a scanning

electron microscope at 700x magnification. A: Station RV 24 April 1973
identifiable organisms include Fragilaria (lower left), Melosira
(upper right), Asterionella (upper center), and Cyclotella (right
center). B: Station 6, 24 April 1973; identifiable organisms include

Stephanodiscus (left center), Coscinodiscus (center), and Cyclotella
(lower right). :
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Figure 7. Typical suspended matter (2-m depth) viewed with a scanning
electron microscope at 700x magnification. A: Station 19, 24 April
1973; identifiable organisms include Cylindrotheca (left center) and
a fragment of Coscinodiscus (lower center). B: Station 36, 23 April
1973; identifiable organisms include Stephanodiscus (left center) and

Diploneis (center).
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Figure 8. Typical suspended matter (2-m depth) viewed with a scanning

electron microscope at 700x magnification. A: Station 3, 31 July
1973; identifiable organisms ‘include Thalassiosira (center and.
upper right). B: Station 6, 31 July 1973; identifiable organisms
include pennate diatom (upper center), a fragment of Skeletonema
(right center), Thalassiosira (lower center) and Chaetoceros (lower

left).
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1973; identifiable organisms include Coscinodiscus (upper center),
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Chaetoceros (lower left). B. Station 36, 31 July 1973.
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Gate (station 19). South bay was characterized by water of intermediate
concentrations, ranging from 10 to 40 mg/l. The concentration maximums in
north bay coincide both temporally and spacially with the turbidity maximums
(Figs. 4, 11). s
Particle concentrations, as measured with a Coulter counter, ranged
from 40,000 to 90,000 particles/ml in April (Fig. 12) and from 13,000
to 50,000 particles/ml in July (Fig. 13). During April the highest
numbers were found in north bay and coincided with the turbidity {(Fig. 4)
and suspended particle (Fig., 11) maximums; during July, this maximum
was not as well defined. The south bay concentrations during April and
July were similar,

Phytoplankton cell numbers . .

Cell numbers ranged from 1300 to 1400 cells/ml during April (rig. 12)
and from 1100 to 1500 cells/ml during July (Fig. 13). Highest numbers
were found at stations 7 and 9 during April and July, respectively.

Particle sizes

The range of particle diameters, measured by CoulterR counter, is
about 2 te 100 u, During April, the mode of this size distribution
varied spatially (Fig. 14): in river water, the mode was 4 u, whereas
in the area of the turbidity maximum, a welli-defined mode occurred between
8 and 20 u; at Golden Gate, oceanic waters were characterized by '
particles of two discrete modal diameters, 8 and 64 H; 1n south bhay, the
modal diameter was 8 W. During July (Fig. 15), the particles in the
turbidity maximum showed similar distributions to those seen in April,
with medal diameters of about 16 u; similarly, the Golden Gate station
showed a bimodal distribution, and the south bay station showed a
particle modal diameter of about 8 u.

Fhytoplankton cell sizes ranged from 10 to 70 u and were depéndent'
on the species measured. '

Clay mineral composition

The detection limits of x-ray diffractometric techniques are dictated
by the amount of lithogenous matter on the filters. Detectible quantities
were found in water samples in north bay and at the southern end of
south bay; near Golden Gate, detectible quantities have only been collected
during higher river discharge when relatively turbid low-salinity water is
present, ‘

Semiquantitative determinations of sample composition were made
from the diffractometric épectrao The method by which the proportions
of clay mineral groups were determined is as follows: (1) the increase
in the area of the 10 % peak of the sample when_heated te 400° C compared
to the area of the 10 A peak of the glycolated sample was assigned to
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mcngmorillonite plus mixed-layer montmorillonite-illite (M+MI); {2) the
10 A peak area of the glycolated sample was assigned to illite (I}; and
{3) half the area of the 7 A peak of the glycolated sample was assigned
to chlorite plus kaolinite (C + K) (J. C. Hathaway, 1974, oral comm.).
The results were then expressed in relative percent. The "percentages"
of the clay minerals thus computed are useful only for delineating

areal trends and may or may not correspond with the absolute amounts of
clay minerals within San Francisco Bay. Other methods of estimating the
relative abundance of clay mineral groups are currently being employed
and may be used subsequently to outline the temporal and spatial variability
of clay minerals within San Francisco Bay. Thus, the data presented in
this report must be regarded as preliminary.

The relative abundances of I, C+K, and M+MI are indicated in
Figures 16 and 17. During April, no distingt longitudinal trends were
evident (Fig. 16). There was, however, a suggestion that I dominates
over M+MI in the northernmost portion of north bay, whereas M+MI
dominates over I in the southernmost portion of south bay; in the central
pertion of the bay system, random admixtures of I and M+MI are present.
During July, station 36 showed the same distribution as was observed
in April (Fig. 17}. In north bay, however, a distinct longitudinal
trend was observed: I progressively increased and M+MI decreased in
relative abundance from stations 9 to 19 (Golden Gate). -

DISCUSSION
General Sedimentologic Featuxes

The sedimentological patterns and processes of north bay are
controlled by the high annual river flow from the delta: large volumes
of sediment are contributed by this river flow, and the river flow
in turn generates and maintains a turbidity maximum (Conomos and
Peterson, 1274). In north bay estuarine circulation is generated by
the discharge of the Sacramentc and San Jeaguin Rivers which varies
generally_from the winter high of 700-1400 m3/sec to the summer low of
100-500 m~ /sec. Even at low flow, the discharge is sufficient to
maintain an estuarine cell in the northern reach of the estuary
(Conomos et al., 1971). Estuarine cixculation is characterized by a
null zone (zone where landward-flowing bottom density currents and
seaward—flowing'bottom river currents have equal and opposite effects
on the non-tidal flow. The null zone migrates longitudinally in
response to seasonal changes in river inflow. This null zone is also
the location of the turbidity maximum {Conomos and Peterson, 1974).

By contrast, south bay receives small volumes of riverborne sediment;
the sedimentological patterns and processes are largely controlled by
recycling of bottom sediments. into the 'water column by tidal currents
and wind-induced waves (Conomos, 1963). Hence, the distribution of.
suspended particles seems random, and no turbidity maximum is present.
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The abundance and composition of the suspended particles in the
turbidity maximum changes seasonally. With the decline of winter high
river inflow the concentration of riverborne suspended particles
decreases. During this period, the phytoplankton caoncentration in the
turbidity maximum often increases five-fold, and the suspended-particle
concentration diminishes by about 50 percent (typically 200 to 100 mg/L) .
By late summer, phytoplankton {diatoms constituting a major portion of
the biomass) and zooplankton constitute a significant fraction of the
suspended particles at the turbidity maximum, increasing from a typical
winter concentration of 3 percent by weight to a summer concentration of
about 30 percent (Conomos and Peterson, 13974), :

Advective transport that introduces particulate matter into a
trap formed by the convergence of the landward-flowing density current
and the seaward-flowing near-bottom river current at the null zone
explains the accummulation and maintenance of the lithogenous as well
as the biogenous components of the tuxbidity maximum (see, for example,
Glangeaud, 1938; Postma, 1967; Meade, 1969; -Schubel, 1969; Conomos and
Peterson, 1974). -

The gross features seen in the transmissometexr {Fig. 4}, gravimetric
(Fig. 11) and particle and phytoplankton cell count (Figs. 12, 13) data
define this turbidity maximum., In addition, the longitudinal migration
‘of the null zone and its attendant turbidity maximum caused by differences
in river inflow are indicated by this data. More detailed discussions of
the processes and rates pertaining to the distribution, abundance, and
movement of both lithogenous and biogenous particles follow.

Processes and Rates

Lithogendus Particles

The higher suspended particle concentration in the river in April
-.compared to July (Figs. 12, 13) may be explained by the relative

availability of lithogenous particleé to be transported, or to the

increased capacity of the stream (Leopold et al., 1964, p. 182). During

low discharge, the suspended lithogenous particles reaching the mainstream
Sacramento and San Joaguin Rivers may be deposited in the river beds.

During relatively large winter discharges these particles may be

resuspended and transported downstream. The capacity, or the total load

a river may carry, is increased by a concommitant increase of total

volume of flow, or discharge, and generally increased particle concentrations.

In the bay system, however, the high tidal current velocities
dominate over the hydraulic current velocities. These tidal currents
are strong and cause sufficient turbulence to resuspend considerable
amounts of particulate matter into the surface layers of the estuary in
cloud-like bodies, a condition commonly seen in south bay and the shallow
portions of north bay (Figq. 18). This resuspension as a function of

3
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tidal variation (time), has been clearly observed at time series stations
occupied at selected areas during summer and winter sampling periocds
(Peterson and others, 1974a).

sAlthough the spatial and temporal changes in lithogencus particle
diameters (Figs. 14, 15) are difficult to evaluate because the data
represent admixtures of both (larger diameter} phytoplankton cells and
detritus, certain features can be explained. Firstly, flocculation of
lithogenous particles can explain the abrupt change in particle size
distribution seen in between stations RV and 3 during April (Fig. 14);
particles *4 1 at station RV (O‘O/oo salinity; Fig. 3) became agglomerated,
forming larger diameter (8-16 1) particles in the presence of salt
in the water (station 6 near surface salinity = 0.5 /oo). Phytoplankton,
found in large numbers in this area, however, commonly have diameters
of about 16 u, and numerically may help enhance this size fraction.,
Secondly, the large (>64 u} diameter mode found at Golden Gate durlng
both April and July is due to large oceanic phytoplankters. ’
Thirdly, the concentration of suspended particles decreases seaward,
because of progressive lateral mixing with less turbid water (Figs. 14, 15).
This third factor does not completely explain the concentration decrease,
as the small (354 p) modal diameter particles decrease from the river to
Golden Gate. Coarser particles apparently settle out of a given water
parcel relatively faster because of a progressive decrease in water
turbulence and vertical mixing. This decrease is a function of distance
' seaward from the river and of time elapsed since delivery at the river
mouths.

The average horizontal movement of surface water within north bay
is on the order of 5 to 10 km/day {(Conomos et al., 1971). The correspondlng
vertical water movements are about 1 m/day. As these upward water-
movements are approximately equivalent to settling rates for lithogenous
matter -4 p in diameter (Conomos and Gross, 1972), any lithogenous particles
which have settling rates equal to or less than these values could
remain in suspensic.. until they are transported to areas where vertical
water movements are smaller,

The size differentiation with time and distance towards the ocean,
arising from differing settling rates and transport behavior, is perhaps
reflected in the progressive changes in clay mineral composition seen
during July (Fig, 17). The progressive diminution of M+MI and the enhancement
of I seaward is similar to the observations of the Columbia River effluent
reported by Conomos (1968). The reason for this progressive change is unknown.
These components should have approximately equal settling rates as shown
by observation (Whitehouse et al., 1959) and by theory based on grain
diameter, morphology, and specific¢ gravity (Conomos, 1968).

Biogenous particles

The concentrations of algal cells are low relative to the lithogenous
fraction (Figs. 12, 13). Processes determining the concentration of the
biogenous fraction include primary productivity, which increases the
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amount of living biogenous matter present, and grazing and settling, whlch
decrease the amount present. .

The surface layers of the adjacent ocean (Gulf of the Farallones) and the
area of the turbidity maximum are important sources of biogenous matter.
Data from Peterson and others (1974b) and Scrivani {1974), consistent
with previous data (Bain and McCarty, 1965), indicate that both the
rate of primary production and the concentration of chlorophyll a in the
waters are high; light rather than nutrients limits phytoplankton
production during most of the year,

Major processes decreasing the concentrations of biogenous particles
are grazing by zooplankton and removal by settling. Grazing, although
important in affecting the size and quantity of organic particles, has
not been extensively investigated. Diatoms (Smyda and Boleyn, 1965, _
1966a, b} and organic matter (Hobson, 1967) have been repcorted to settle >
at a rate of about 1 m/day, rates of the same order as the rates of
vertical water movements while horizontal movements are 104 times
greater. It may be concluded that removal by settling of planktonic
diatoms and organic matter from the low-salinity waters in north bay -
would be minimized by the vertical water movements. These particles
could be held near the water surface at least until they were carried
out of north bay, a situation similar to that in the Columbia River
effluent (Conomos, 1968). '

Furthermore, it is probable that any organic particles may be returned .
to the area of turbidity maximum by the nearbottom density current which flows
landward. 1In south bay, where vertical mixing by winds and tidal currents
often extends to the bottom, most of the phytoplankton (comprised mainly
of benthic forms) are eroded from the substate and recycled vaertically
through the water column,

SUMMARY AND CONCLUSIONS

Lithogenous particles, kept in suspension in the river, are'transported
downstream to the estuarine area at varying rates which are dependent on the
river discharge level. The finer-grained suspended particles wmay be retained
in the seaward-flowing lower-salinity' layer, with the ccarser—-grained matter
settling cut. ‘Both successive dilution and particle settling decrease the
concentration of suspended particles from river to ocean. 1In south bay, wave
and current resuspension largely determine the spatial and temporal distribu- -’
tion of fine-grained lithogencus particles. These particles may be held near
the surface in areas where their settling velocity is of the same magnitude
as the vertical water velocities. The suspended particles thus retained near
the surface are transported out of north bay by horizontal advection as well
as horizontal dlffu51on.,

The paths of the biogenocus particles largely depend on the water
movements, and the material behaves much like the finest-grained
lithogenous matter. The concentration increases are caused mainly by



phytoplankten growth, whereas the decreases are due'primarily to
successive dilution with water of lower biogenous matter concentrations.
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A FIELD EVALUATION OF A NEPHELOMETER
FOR THE DETECTION OF TURBIDITY VARIATIONS
IN SAN FRANCISCO BAY AND THE GULF OF THE FARALLONES

by

Laurence E. Schemel

Aerial photographs and satellite imagery of San Francisco bay estuary
and adjacent Pacific Ocean commonly resolve surficial turbidity variations
(Fig. 1; Carlson and McCulloch, 1974). These variations may be studied
from a surface vessel by continuously pumping surface waters along a
transect and measuring the turbidity of the sample stream, This report
demonstrates the range and sensitivity characteristics of a fluorometer
equipped with a flow-sample nephelometry cell in turbid water sampled
in San Francisco bay and clear water sampled in the Gulf of the Farrallones.

Turbidity, a non-specific optical property of natural waters, is
conveniently evaluated by transmissometers, which measure the degree of
extinction of a light beam, and nephelometers, which measure the level of
scattered light at one or more angles to the incident beam {(Jerlov, 1963).
The transmission measurement relates by a logarithmic function to the volume
attenuation coefficient, which is the sum of the scattering -and absorption
caused by both particles and light absorbing constituents (Tylexr and
Preisendorfer, 1962). The scatterance at one angle, as measured with a
nephelometer (commonly at 90 degrees), is in practice not easily related to
the total scattering coefficient in natural waters (Morriscn, 1970), and is
usually referenced to a turbidity standard when evaluating relative turbldlty
and changes in turbidity (Hochgesang, 1964).

Nephelometers respond linearly to changes in particle concentration
in clearer waters and exhibit high sensitivity (Turner, 1973). Turbid
waters commonly found in estuaries severely limit light penetration to
short distances, and may only be measured effectively by transmissometers
with short optical paths and nephelometers. Nephelometers ave not directly
dependent upon optical path length for sensitivity, making possible a
sensing cell design with considerably less internal volume than that required
for transmissometers in flow-sample systems. This allows better resolution .
of short-duration turbidity variations. S

Instrumentation and Methods

A continuous water sampling and analysis system was used to obtain
water quality and turbidity records (Table 1). In situ salinity and
temperature, water sampllnq depth, nephelometer turbldlty, chlorophyll a
flourescence, and percent transmission data were recorded on an analog
stripchart. The 1 decimeter transmissometer was calibrated to 100 percent
in distilled water. Nephelometer turbidity and chlorophyll a flourescence
were recorded as percent of full scale at each sensitivity setting. Further

L "2,
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Fiqure 1. Turbid water plumes in San Francisco bay estuary
and adjacent Pacific Ocean. ERTS image, band 4 (0.5-0.6
um), no. 1327-18180, June 15, 1973.
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Table 1.  Continuous water saﬁpling and analysis instrumentation.

instrument

Salinity-Temperature-Depth/
Pumping system, OSEAS

Fluorometer/Nephelometer, Model 10

Fluorometer, Model 111

Analog recorder, Model 260

Transmissometer, Model 411X

94.

Manufacturer

Interocean Systems, San Diego, Calif.

Turner Designs, Palo Alto, Calif.

G. K. Turner Associates, Palo Alto,

Calif.
Gould Inc., Cleveland, Chio

Hydroproducts Inc., San Diego, Calif.



standardizations were not performed on these instruments as correlative
changes were desired rather than absolute data. :

Results and Discussion h

Relatively clear surface and subsurface waters were sampled on
august 9, 1973, in the Gulf of the Farallones {Figs. 2, 3}. A coastward
surface water turbidity increase was detected by a nephelometer turbidity
increase from 55 to 96 percent. The transmisscometer response was a
decrease from 96 to 92 percent. In this particular case, a longer path
length (perhaps 1 meter) transmissometer would have been necessary to
achieve sensitivity of the order that was exhibited by the nephelometer.

The correlation of the nephelometer and chlorcophyll a flourescence
records during the vertical profile suggests that phytoplankton constituted
a significant fraction of the measured turbidity. The ability of both the
fluorometer and nephelometer to detect structure in the vertical distribu-
tions of turbidity and chlorophyll a is a function of both their sensitivities
and temporal resolutions, the latter being a consequence of their low volume
flow-sample cells. '

On February 5, 1974, a surface sampling was performed from the San
Rafael bridge to a station located off Point San Pablo and return {Figs.

2, 4). B distinct boundary of two adiacent surface water masses was
detected each time it was crossed by large changes in salinity, transmission,
and nephelometer turbidity. Although the sensitivities of the nephelometer
and transmissometer were comparable, the transmissometer depicted a more
diffuse boundary because its larger flow cell volume allowed considerable
mixing. ' '

Short duration turbidity and salinity variations, a con;equence of the
turbulent mixing of turbid low-salinity water with clear higher-salinity
deeper water, were resolved by the nephelometer and salinometer in the more
turbid water area. During this time, the transmissometer recorded zero or
near-zero percent. Since light was not able to sufficiently penetrate the
distance of its optical path, a shorter path length transmissometer would
have been necessary to achieve adequate turbidity range, but with a probable
loss of sensitivity. Four scale changes enabled the nephelometer to maintain
optimum sensitivity over a wide range of turbidity during the entire transect.

Conclusions

The nephelometer is capable of detecting turbidity variations in
clear water with greater sensitivity than the 1 decimeter transmissometer
used in this study. Turbidity variations in more turbid water may be
measured; largely as a conseguence of the short optical path length in the
low-vélume nephelometry flow-sample cell. Short duration variations are
resolved, allowing correlation of turbidity, in situ salinity, and ’
chlorophyll g_fluorescence‘records.
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ERTS OBSERVATIONS OF SURFACE
CURRENTS ALONG THE PACIFIC COAST OF THE UNITED STATES

by

Paul R. Carlson and Deborah R. Harden

Introduction

Oceanographers have studied the current flow along the Pacific coast
for many years, but their efforts have been directed largely at the
problem of current dynamics of the offshore water. Three decades agao,
Sverdrup and others (1942), reported that the California Current, the
southerly extension of the West Wind Drift {(Fig. 1), flowed south most of
the year, but in the winter in response to a regional reversal in wind
direction, there was a corresponding reversal in surface current flow
{Davidson Current). Subsequent studies (Reid, Roden, and Wylie, 1958;

. Reid and Schwartzlose, 1963; Burt and Wyatt, 1964) have substantiated the
seasonal reversal of near-surface currents along the west coast of North
America. However, these studies have concentrated on the offshore waters
and have used ocean-going vessels to deploy drift bottles. As a result, a
synoptic picture was difficult to reconstruct, and informaticn for the
nearshore, near-surface zone has been scarce,

This report demonstrates the utility of satellite imagery and drift
card data to add to the information of near-surface water movement in the
very nearshore waters of the west coast, indicates seasonal raversals of
these nearshore waters, and illustrates some technigues used to study the
distribution and nature of the suspended matter in the nearshore water.

Techniques

In the study area, which includes central and northern California,
Oregon, and Washington, ERTS imagery has recorded areas of differing
water color up to 30 km offshore, but most of the turbid water visible on
the satellite imagery is within 10 km of the shoreline. The green band
«(M5S-4, 0.5-0.6 pm) very clearly shows turbid water in the nearshore zone - -
(Fig. 2). This turbid water is often present off major rivers as discrete
sediment-laden plumes. Such Plumes serve as tracers of near-surface
currents, as they become elongated in the direction of flow (Fig. 2). With --
very turbid water, as in some estuaries or near theeffluents of major rivers,
details of the overlapping suspended sediment lobes become obscured on the
green band. Under these conditiens, the red band (MSS-5, 0.6~0.7 nm) shows
greater detail (Fig. 3) because this wavelength does not penetrate the
water column as deeply. Combined use of green and red bands provides optimum
detail of the complex turbidity patterns in estuarine and coastal waters.

Observations were made in. the Gulf of the Farallones concurrent with
ERTS overflights. Measurements were made of the water turbidity and
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Figure 1. Surface currents of the
northeast Pacific Ocean. Modi-
fied from Uda (1963); and
Dodimead, Favorite, and Hirano
(1963).
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Figure 2. Plumes of turbid water and sketch of inferred current directions.
ERTS multispectral scanner image, band 4 (0.5-0.6 um) no. 1167-18283 of
northern California coast, January 6, 1973. The prevailing wind
direction measured at Eureka for January is from the southeast (U.S. Dept.
of Commerce, 1972). The suspended sediment concentration in the Eel
River at Scotia was 122 mg/l on January 5, 1973, at 1610 hrs. (U.S.

Geol. Survey, unpublished data, 1973). Image has been enhanced photo-
graphically using direct -reversal high-contrast film (Allred, 1971).
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Figure 3. Turbid water of San Francisco Bay and adjacent Pacific Ocean.
ERTS image band 5 (0.6-0.7 um) no. 1183-18182, January 22, 1973. Note
plume of turbid water in Gulf of Farallones (left edge) and San
Francisco Bay (left of -center). The source of this plume is the .
Sacramento-San Joaquin'River system (under clouds, upper right). The
source of the plume in Monterey Bay (lower right) is the Salinas River.
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suspended particle characteristics using transmissometer and nephelometer
(see Schemel, this volume), Secchi disc and Coulter counter. Concentration
of suspended matter was obtained by filtering water samples through silver
filters (pore diameters 0.45 W) and salinity was measured by an in situn
salinometer. Computer analyses of digital tapes of images (Honey and Lyons,
1974), density slicing (Ross, 1973}, and microdensitometer traces were made
across selected images in order to compare image data with "water-truth."

Drift cards were deployed to verify the interpretations of surface
current directions as deduced from ERTS imagery (Fig. 4). Furthermore,
the drift cards provided information when the coastal zone was obscured
by clouds during ERTS overpasseé. The orange plastic cards have a welght
in one corner and a styrofoam float in the opposite corner, which cause
them to float almost totally submerged and thus be carried by the near-
surface currents. The cards were air-dropped off the mouths of rivers and
streams from central California to southern Oregon every two months during
satellite overflights from June 1973 through February 1974. About 1,200
cards, in packets of 50, were dropped during each period, at distances of
1.6 and 8.1 km (1l and 5 miles) seaward of the river mouths. The inferred
drift and minimum speed of the surface water as indicated by these cards,
was determined by plotting the release times and locations and the recovery
times and locations. Comparison of drift card vectors with interpretations
of current directions deduced from ERTS imagery shows similar patterns
(Fig. 5), and thus reinforces the reliability of the ERTS imagery as a tool
for studying the movement of the surface currents.

Sources of Turbid Water

The principle sources of nearshore turbid water along the wast coast,
readily seen on ERTS imagery, are {1) the rivers draining the Coast Ranges
(Fig. 6), (2) the Columbia River, which drains much of the Pacific Horthwest
(see Carlson and Conomos, this volume) and, the Sacramento-San Joaquin
River system, which dfains the west flank of the Sierra Nevada Mountains
and flows into San Francisco Bay. Secondary sources of'turbid water are
coastal landslides, beach cliff and headland erosion, reworking of the bottom
sediment by storm waves, plankton blecoms, and waste water effluents. During
times of high river discharge, the very turbid water being introduced to the
nearshore zone, often masks the secondary sources of suspended matter on ERTS
imagery {i.e., Eel River, Fig. 2). However, use of U-2 and other aerial '
photographs to supplement the satellite imagery provides the necessary resolu-
tion to detect secondary sources of suspended matter, such as pulp mill
effluents (Fig. 7). ' ’ '

Although the waters of the Sacramento-San Joaquin drainage system enkter
a large estuary, wmuch of the suspended load is carried through the system
to the ocean {Fig. 3)}. The turbid, low salinity water bifurcates as it
enters the central part of San Francisco Bay (Carlson and others, 1970}; one
lobe flows into the south bay and the second, larger lobe flows through the
bay into the Pacific Ocean (Fig. 3 and 8). The ocean plumes of turbid
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U. 5. GEOLOGICAL SURVEY

VITAL RESEARCH DATA REQUESTED

PLEASE READ OPPOSITE SIDE AND FILL QUT
RECOVERY DATA ON CARD BELOW. .

AFTER COMPLETING THE REQUESTED DATA ON THE
%:«s;onm.easa MAIL IT AT YOUR EARLIEST OPPOR-
UNITY.

NO POSTAGE 1S NEEDED

Sty WEn e mek mE s e &3 R B

nCEAH RESEARCH DROGUE
Y. S. GEOLOGICAL SURVEY

VITAL RESEARCH DATA REQUESTED

PLEASE READ BELOW AND FILL QUT RECOVERY DATA
CARD ON OPPOSITE SIOE.. '

TO THE FINDER:

THIS DRIFT DROGUE WAS RELEASED IN THE
SAN FRANCISCO BAY SYSTEM OR OFF CALIFORNIA
QR OREGON AS PART OF A DETAILED STUOY OF
IN-SHORE AND COASTAL CURRENTS. A DETAILED
SURVEY OF THE SEASONAL MOVEMENT OF THESE
WATERS WILL HELP US BETTER UNDERSTAND THE
EFFECTS OF RIVER DISCHARGE AND WIND ONTHESE
WATER MOVEMENTS. THIS UNDERSTANDING 1S IM-
PORTANT, AS WATER MOVEMENTS CONTROL SEOI-
MENT DISTRIBUTION AS WELL AS MOVEMENT AND
EVENTUAL DEPOSITION OF NATURAL AND MAN-
MADE POLLUTANTS. : '

YOu CAN ADD TQ OUR UNDERSTANDING OF
WATER MOVEMENTS IN THE BAY SYSTEM AND
COASTAL OCEAN BY RETURNING THE ADDRESSED
CARD WITH THE REQUESTED INFORMATION ON LO-
CATION AND.DATE THE DRIFT DROGUE WAS FOUND.
ND POSTAGE 1S NECESSARY. '

DR. PAUL R. CARLSON

U. S. GEOLOGICAL SURVEY
445 MIDDLEFIELD ROAD
MENLG PARK, CALIFORNIA 94029
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Figqure 4. Example of drift card used to determine flow velécities of

nearshore surface currents.
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Figqure 5. HNear-surface nearshore current directions, mid-June 1973, along
the northern California coast as indicated by drift cards and ERTS
imagery. The long continuous arrows connect the point of origin
(small circles off rivers) and point. of recovery (arrowheads impinging
on coastline) of drift cards dropped on June 14, 1973, and reported by
August 14, 1973. Current directions as represented by arrows were
interpreted from configurations -of suspended sediment plumes present on
ERTS imagery (band 4) of June 17, 1973 (no. 1329-18281, -18283, and
-18290).
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Figure 6. Plumes of turbid water from
central California coastal rivers.
Pt. Arena at center of coastline,
Russian River plume in lower fourth
of image. MNote the distinct souther-
ly flow. ERTS band 4, May 11, 1973
(no. 1292-18234).

Figure 7. Turbid water off Humboldt Bay.
The largest part of the turbid water
probably came from the Eel and Mad
Rivers located south and north of the
bay, however, the two light colored
plumes just north of the bay entrance
mark the effluents from two paper mills
located along the peninsula. U-2 photo-
graph taken January 4, 1973, from an )
altitude of 21,300 m (65,000 £ .
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Figqure 8. Plume of Turbid, low-salinity water discharged from San Francisco
Bay (upper right) into the Gulf of the Farallones. U-2 photograph taken
December 18, 1973 from an altitude of 21,300 m (65,000 ft). Marin
Peninsula (upper edge) across Golden Gate Bridge from San Francisco

(right center).
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water have been observed for several yeaxs on high~ and low-altitude
photography (Fig. 8) and satellite imagery. There is a good correlation
between surface area of the visible plume of turbid water and discharge
from the Sacramento-San Joaquin River system (Carlson and McCulloch,
1974; Fig. 9.

Stations in the Gulf of the Farallones were occupied during ERTS
overflights on January 23, May 30, and August 9, 1973 at which time
measurements were made of physical characteristics of the water and
suspended matter (Table 1 and Pig. 10}. The concentration of suspended
matter decreased oceanward during the winter cruise (Table 1). The
coincident ERTS image and film density measurements (Fig. 11) indicate a
similar trend with much more turbid water in the bay and a decrease in
turbidity values through the plume into the Culf. Comparison of the size
and concentration of suspended matter from the winter sampling (1/23/73)
with those of spring (5/30/73) and summer ®8/9/73) (Table 1 and Fig. 10},
shows considerable variation seasonally and from station to station.
Pactors influencing the variations in suspended matter in the Gulf of the
varallones are: (1) discharge and suspended sediment load from the
Sacramento-San Joagquin River system; {2) wind and waves which affect
lengshore transport, resuspension of bottom sediments, and upwelling of
nutrient~laden waters; and (3) phytoplankton blooms which have patchy and
sporadic distributions. The larger median diameters and principle modes
~ measured on those samples eallected at the seaward end of the January and

" May sampling lines (Table 1 and Fig. 10) suggest the importance of the
phytoplankton in those waters. The larger particles and smaller amounts
of suspended matter measured on the August cruise (Table 1) also indicate
the prevalence of phytoplankton {especially diatoms such as Asterionella,
Chaetoceros, Coscinodiscus, and skeletconema; E. P. Scrivani, U. Calit.,
Berkeley, oral commun., 1974.

ERTS imagery provides a synoptic view of a large section of the .
coastal zone, often recording more than one river effluent on a given
image and thus providing a constant tonality and simultaneocus comparison
of plume confjuration (Fig. 12y, The image of the turbid water from
the Gulf of the Farallones to Monterey Bay shows the complex nature of
the plumes, and the accompanying sketch indicates the ranges in turbidity
of the plumes and adjacent water. In San Francisco Bay, the Secchi disc
visibility depths ranged from 0.5 to 1l m, whereas, in the Gulf of the
Farallones and in Monterey Bay the values ranged from 2-3 m in the plume
to 5-6 m in the less turbid water outside the main plume (Fig. 12). By
way of comparison, Secchi disc visibility depths of 30 to 40 m have been
measured in oceanic waters 85-100 km seaward of San Francisco (Frederick,
1970). At the time of the satellite pass {Fig. 12) the coastal currents
seemed to be moving toward the south. An exception is off the Salinas
River where the plume was deflected north, suggesting the presence of a
countercleckwise gyre in Monterey Bay.

Portions of the same ERTS image were also studied using computer
display of digital tape data (Honey and Lyons, 1974} and density slicing
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L) mable 1. . Physical characteristics of water and suspended matter in the upper meter in the Gulf
% of the Farallones. Station locations are shown on Figure 10 except Farallon Islands

o

% ' and Swell stations which are located 25 and 12 km seaward of Light Buoy.
2
%%

Em

1/23/73 ' 5/30/73 . 8/9/73
»
Sus.* Mcd.* Princ.* Sus. Med. Prine. Sus. Med. Prine. Secchi
4 Sed. diam. mode - sed. diam. mode Sed. diam. mode dcpth m
. o 1 u
Station 5 /o0 mg/l H u s° /00 mg/l p u 50/00 ng/l oy oy
Golden
Gate Br. 15 14.3 11 9 : 29.4 1l4.8 1B a8 Y 32.4 6.4 12 7 4
mile 16 .16.6 11 Ej 30.2  14.8 14 8 ©32,7 5.2 13 20
Shoal 20.5 11.% 7 5.5 3.5 22.0 14 10 33.0 3.8 22 20 5
21 10.4 g 745 .
Light . ) ] ) .
Buoy 22.8 7.2 8 20 32.5 5.4 13 5 34.0 7.4 23 20 6
Swell - 33.8 4.8 18 13 & 34.0 5.4 23 21
: ’ 36
Faxallon o ' 34,0 . 4.2 18 13 12
Islands : ‘ :

*SQ/oo = Salinity parts per thousand; Sus. sed. =g/l = suspended sediment milligrams per litex;
Med. diam. p = median diameter miczons {of suspended particles); Principle mode p = most pravalent
particle size; $ecchi depth m = Depth in meters at which 30 com. diameter white dise disappears from sight.
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Figure 11. Turbid water of San Francisco Bay system. Top: ERTS image,
band 5 (0.6-0.7 um). January 23, 1973. Note plume in Gulf of Farallones
and in San Francisco Bay. Bottom: Variations in density of ERTS image
which correspond to variations in turbidity of near-surface water.
Highest numbers indicate the most turbid water and lowest the least
turbid. Density values obtained from ERTS image using 12s Digicol.
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Figure 12. ERTS image and sketch of turbid water in San Francisco Bay,

Monterey Bay, and the Gulf of the Farallones. The complex lines
offshore separate tonal differences that signify different turbidities.
The three graphs of Secchi disc visibility depth illustrate the ranges
in turbidity shown by the ERTS image of April 4, 1973, (no. 1255-18183).
The Secchi disc measurements were made April 4, 5, and 19, 1973, in

San Francisco Bay, the Gulf of the Farallones, and Monterey Bay.

Measurements in Monterey Bay by Moss Landing Marine Laboratory (BroenKow'
and Benz, 1973).
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with the Izs Digicol (Ress, 1973}. The ERTS digital tapes were utilized

to provide a printout of the reflectance levels of a portion of the Gulf
of the Farallones north of the Golden Gate Strait {Fig. 13}. This

printout shows the northern boundary of the plume {compare with Fiq. 12}
and also shows much more detail within the plume than could possibly be
monitored at the instant of the image collection even if several vessels
were used. However, if one generalizes on the digital printout, the gross
features can be determined. The rapid changes in such a dynamic environment
makes this cemputer technique of plume monitoring impractical, at least
with present sampling procedures. The density slicing technique involved
the use of ERTS transparencies and the IS5 pigicel. Photographs and trans-
parent overlays can be used with this sytem to record variations in density
of the positive transparency which are manifestations of the variations in
water turbidity. The density slicing results are shown in Figure 1l4.
Comparison with Figure 12 shows how the Digicol highlights the plume area
and how the densities change across the plume. Note that the higher values
of percentage of light transmitted correspond to the more turbid water.

The turbid water in the Gulf of the Farrallones on april 4, 1973 can be
divided into three discrete units, (Fig. 14} which are outlined by the
dashed lines and characterized by the measured values listed in TFable 2.

rable 2. Characteristics of the turbid water in the Gulf of the

Farallones.
% transmitted Secchi disc Suspended sedimenf
e L@ aea® Lo G
main plume 45-55 <2 25-30
intermediate  40-45 N3 20-25
outer <40 ) o ~10-15

(a}) From April 4, 1973 ERTS image and Digicol measurements (Fig. 14).

(b} Water truth collected April 5, 1973 along line C-D (Fig. 12), over
2-hour time periocd that bracketed time of image reception.

seasonal Reversals of Coastal Currents

The seascnally changihg flow directions of nearshore currents along
the northern California coast can be traced from ERTS imagery (Fig. 15).
In the fall of 1972 currents were flowing southward at the time of an
ERTS overpass, but during the winter the flow was distinctly northward.
By spring of 1973 the flow had ‘reversed again. This same sequence of
current reversals took place along the central Califernia coast during
the same seasons of 1972 and 1973 (Fig. 16) and along the Oregon and
Washington coasts in the winter and spring of 1973 (Fig. 17). Continued

114



38+

. H
! z - -
1
. t GULF OF [
[ S S 4 _—
naccr:ua R Tl"f‘lﬂll T 1 THE
- FasgenatiRpnsspp L Fll Vb 10 1 I
Ccnuunuehlur:tlMr'uctt:’:t ! ti z FARALLONES
Lidn d A 'J-“"""’E"!W\‘lﬂfftttt"q
LLaasaadCCunean] JCADNIARAC T ILCOHCLArD daaunrprfDd g i ’

IE[[;E“HI"‘CCHC"‘“"((('ttlﬂl’!EEH[C(LCCCCCftnt[ a9
seaalfaaLnan] LT G
S8 1iidayrech un‘ua--mw‘-
[TYFTIATE M
YTy C30DALLALF Ja50R
L LTI EYAER T4 4T3 FEDEFREER A LMY aRinad
l-l‘.{"\"r“ur.\"hue (4344 LI FYANRTTS S 443414 44
S IETTYY LEdsh H~nlﬁ1‘l\-‘-httttf|(((""I“~!

XITTVND 900d J0
SI HOVd "TVNIDIHO

(AN LS c-nlnh ulu‘n far arw son data . .
PaCIFIE €CLan ZUTHIZD GRLTLY BATE, AREN 4,
otiy Yoaw 1259~ :nsvu (3]
» Trytee st Fow difentesl %) Fres adpr 47 TP \ il
"
lla" . \
[T . :
e ‘
1 ¥
tir 11 =l i
T T T ey : ' \
t H
H
H
H . '
1 H
1 1 n
H H

£ FEYRIAS443
Fiee LA PRI 2CC30nndliTddray
LI ALLEL ELEE ruhua:[:tt.,. ¥
adfaan

I P gty r.
RuSdibb 1734 (B U Sy S IN
L uq,-n-w” M

‘.LrE"‘!J?f'ir?"'ﬂ'.‘.E'F’ &
--g-.-___l.\pn,g-n-p

¥ ')"rBd'D"l‘.r[’u-....pnu& YR ,”(-F|
hbb"" SR LR S S R L \'.' }\t I
b :.
'(hratru"t.--tul--p . erifagata
AN R *n'?l\-qu.... (LI
'm M-r'"-nmrnnua Sured Pe R -ut

LR OLLY ' anpathl H k
A AR ‘laor;]ﬁq-aug“u‘-pqa,n.\
u....,..,‘\(-‘-

Bedaue o ""c‘“-‘nrr"' b b
’f"’J"katn-Fi‘Eth'

T s“! “tf"ﬁ'\h‘i'“‘d!d"!'*!"'rﬁ“'hélllb‘!uﬁ'5;5
|hr|'3n-n-.--;‘!--llluu % .-hc-nn oG BT P PR DA Y '~: 6’

2a27
) NS ITE ;.»fn‘}; ua:.‘}.re-:
3 'M'usasrﬂbiuahﬂ!hurn.u LEFET TP -EY Jsuu“a?.p!.ﬁﬂﬂn:aubnlnnaunnnlulllnw
mgAuRI{GYAEL BBEIERRYYAA BE BEARSE3SGAAEAA 1005030 Bpa bhEEIITAINBREBERARLATANANNEEAE uunuunq}m
HEAGAIELLBEABoboRABSEAS LR IEEEIEORohalasvakd ANBBERGEAANORUREBEREREEACIERIRNESMERLEUNRIVASY

Bl (3 1} [TLULL S EIT LR T L TLE DR LY #]

FIGURE 13. COMPUTER PRINTQUT OF ERTS DIGITAL TAYE DATA FROM APRIL 4, 1973 FCR A PORTICN CF THE
_GULF OF THE FARALLONES. Program used was developed at Stanford University by Honey and Lyons
{1974}, The letters represent different reflectance levels (steps on the gray scale). The
dashed line is the approximate boundary of the plume visible on Figure 12. The faint ilrregular
lines encircle the letters D on the printout, indicating areas of relatively h:,gh turbidity.
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Figure 14. Variations in reflectance of various colors of water in the
Gulf of the Farallones recorded as density variations from ERTS imagery
of April 4, 1973, no. 1255-18183. Compare with Figures 11 and 12. Top
right: Plume of turbid, low salinity water off San Francisco as portrayed
on the I28 Digicol. Original coler print of the video display was taken
with Kodachrome X film. Bottom right: Black and White display of same
image as top right. Jagged white line is an example of light transmitted
through the ERTS transparency along the straight white line (line B on A
sketches). Top left: Location map of ERTS image (dashed lines represent
water color boundaries) and lines of light transmittance profiles.
Bottom left: Light transmittance profiles across the plume of turbid

water in the Gulf of the Farallones.
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-Figure 15. Seasonal reversal of nearshore currents along the northern
California coast.

Current directions interpreted from ERTS imagery,
band 4, October 26, 1972,

{(no. 1095-18280 and 18283}, January 6, 1973,
(no. 1167-18280 and 18283), and April 24, 1973, (no. 1275-18284 and
18290) . :
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Figure 16. Current reversals along the central California coast. The
left-hand image, taken November 11, 1972 (E-1112-18233), shows turbid-
water plumes deflected northward, whereas the richt-hand image, taken
March 18, 1973 (no. 1238-18235), shows plumes deflected southward. Both
images are of coastline between Pt. Arena, top left, and Pt. Reyes, near
bottom right (ERTS band 4).

4 | | |



-

4---\
" -t oA

Columbias R
124
40+
4’ Tillamoo
Bay
Y
¥
7
¥/,
/
H
Az
'5"1
i
Siuslaw R.
-
z
's
L%
5
i{‘ Q
{"
¥
4
/
»
A
£ Rogue R.
t .
: ORE.
j.ur ~t42 4773
124%
CAL,

Reversal of nearshore currents along the coast of the Pacific
Northwest. Current directions interpreted from ERTS imagery, band 4,
January 26, 1973 (1187-18380; 1187-18383; 1187- 18385) and Aprll 7, 1873
(1258-18331; 1258-18334; 1258-18340; 1258-18343). ' ’

Figure 17.

o 0



monitoring of the seasonal pattern of current flow was made possible
through bimonthly drift card releases from June 1973 through February
1974 (Fig. 18). It was indeed fortunate that we began this supplemental
program (Fig. 5) because clouds obscured the coastal zone during most of
the ERTS passes from August through December 1973. Comparison of the
flow patterns in October of 1972 and 1973 (Figs. 15 and 18) suggest that
the northerly flowing Davidson Current surfaced earlier in 1973 than in
1972, an observation that would not have been possible with the use of
ERTS imagery alone because of the prevalence of clouds in October 1973.

The drift card trends seem to show two quite different patterns of
flow broken at Cape Mendocino. South of the cape, the flow was quite
consistently one direction, except for counterclockwise gyres off San
Francisco Bay and in Monterey Bay in August (Fig. 18B). North of Cape
~Mendocino, however, the flow direction indicated by the drift card
returns was much more complex (Fig. 18a). The convergent patterns off
Humboldt Bay may be related to tidal circulation of the bay system and
may be influenced further by the discharge plumes of the adjacent Eel
and Mad Rivers. Off the Smith and Klamath Rivers and Redwood Creek,
divergent patterns can be seen in the June 1973 data. Divergency also.
occurred off Redwood Creek in October 1973 and off the Mad River in
February 1974. The complex patterns indicating convergence and divergence
probably are related to a combination of several factors including seasonal
upwelling, coastal configuration, submarine morphology, and local effects
‘of the wind.

In addition to current directions, the card returns provide minimum

speeds for these nearshore currents. Speeds of 50 km/day (58 cnv/sec)

were attained by several cards that were released near the Russian River
on June 14, 1973 and found 50 km south at Point Reyes bheach one day later
{(Fig. 18). Other returns indicated speeds of less than 1 km/day. In
order to obtain a general picture of the current speed, an average of the
two fastest speeds in a given direction was calculated for each drop point,
The mean values of the average speeds were then determined for each drift-
card deployment.date and are listed on Table 3. The dual flow directions
listed for several of the dates resulted from the counterclockwise gyres
in Monterey Bay and the Gulf of the Farallones (8/27/73), central coast)
and the divergent and convergent conditions found off several of the
"northern coastal rivers (6/14/73, 8/27/73, and 2/6/74).

Although these current speeds will vary somewhat from year to year
with local variations in wind velocities, the velocities are generally
consistent with the regional wind patterns (Fig. 2 and Table 4). The
surface currents apparently were weakest in late summer, a time of
reduced windspeed. The most rapid flow along the central coast was.
scuthward in June,. reaching speeds of over 40 km/day (46.3 cm/sec} off
the Russian and the Gualala Rivers. For the northern coast the north-
flowing currents of October and December were the most rapid, reaching
speeds of about 25 km/day {29 cm/sec) off Redwood Creek and the Klamath
and Smith Rivers. .
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Figure 18. Seasonal dlfferences in nearshore currents based on drift

card returns. :

a. MNorthern California and southern QOregon coast.

b. Central California coast.

Dates below each strip map are deployment dates; cards were alr—dropped
at positions of small circles. Arrows indicate generalized paths of
drift cards and arrowheads indicate where the cards were found. Returns
are llmlted to those cards found within two months of drop date.
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Table 3. Mean speeds and directions of nearshore surface currents along
the northern and central California coast. Release and
-recoéery points of drift cards shown on Figure 18. '

Northern coast

Flow direction 6/14/73°  8/27/73 10/19/73 12/14/73 2/6/74
north- 12013)° 4 (5) 16 (19) 20 (23 6 (D)
south 9 {10) 5 {8) 11 (13)

Central coast

s

north 8 (9) 12 {(14) 5 (6) 7 (3)_

south 22 (25) 5 (8)

?nelease date of drift cards
b
mean speed - km/day

c
mean speed - cm/sec
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Table 4. Long term average wind velocities along the Pacific

Coast at Eureka, Califorhié and Astoria, Oregon.

Duration of records: Astoria-speed 19 yrs., and direction

10 yrs.; Eureka-speed and direction 54 yrs. (U.S. Dept.

of Commerce, 1972).
Astoria

Mean speed Prevailing

Month (knots) direction*
Jan. A 9.2 . E7
Feb. . 8.9 ESE
Mar. 8.8 ~ SE
Apr. 8.6 WNW
May 8.4 _ - NW
June . 8.2 Nw
July 8.5 NW
Aug.. 7.8 NW
.\Sept. 7.3 SE
‘Oct. 7.4 SE
Nov. 8.2 SE
Dec. 9.0 ESE

*pirection from which wind is blowing

124

Eureka
Mean speed Prevailing

{knots) direction

6.9 SE

7.2 SE
7.6 N

8.0 N

7.9 N

7.4 ]

6.8 N

5.8 i

5.5 N

5.6 N

6.0 SE

6.4 sn
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ERTS IMAGERY OF THE WEST-CENTRAL COASTAL ZONE OF MEXICQ
by

Deborah R. Harden, Erk Reimnitz and Paul R. Carlson.

The study area .extends along the west coast of Mexico from Mazatlan.--
to Acapulco (Fig. 1). Included in the area are two major rivers, Rio )
Grande de Santiago and Rio Balsas. The purpose of the study was to observe-
patterns of sediment dispersal from these and other rivers using ERTS
imagery (Fig. 2}. We received imagery during late September 1972, from
December 1972 until June 1973, and from mid-September until mid-December
1973, -

e

The climate of the area is tropical. The area receives ahbout:
75-100 cm of rain annually, with 80-90 percent of the precepitation
occurring from late May through October (Roden, 1964) . Rainfall thus
is less than that of the coastal zone of northern California (about
200 cm), but slightly greater than that of the San Francisco Bay area
{about 75 cm). : ‘ :

Many factors determine sediment dispersal patterns at the mouth of a
river. The river discharge rate, bottom configuration near the river
mouth, ocean currents, and the direction, duration, and speed of wind are
important. In addition, nearshore waters may be protected from wind and
currents by protruding lands. Such headlands may also provide barriers
to sediment transport. Planktonic activity, which depends on sunlight,
often creates large amounts of suspended material in nearshore waters,
especially near rivermouths, where nutrient supplies are high.

The amount of sediment supplied to the river mouth is influenced by
many factors especially the nature of the drainage basin; i.e., its steepness
and size, and the resistance of its underlying materials. In addition, the
presence of dams and reservoirs will restrict the amount and size of material
which reaches the river mouth. For instance, the presence of two major dams
on the Rio Balsas may account, at least in part, for the almost total lack.
of sediment plumes off its mouth. Finally, the amount of precipitation
influences the discharge of the river and thus its competence.

Almost no data concerning the parameters mentioned akove are available
for the study area. Any comparison between the rivers of northern latitudes-
with these more tropical streams in order to determine the climatological
influences would necessitate selection of basins of comparable size, geology,
and offshore topography. Other factors complicating a comparison are
vegetation and land use by man. :

pistinct sediment plumes canh be seen at the river mouths in mid-June,
early in the rainy season (Fig. 2) and in mid-September, late in the
rainy season (Fig. 3 and 4). These plumes are considerably less extensive-
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Figure 1. ERTS study area, west-central coastal zone of Mexico.
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Figure 2. ERTS image of suspended sediment plume off the Rio Grande
de Santiago, June 18, 1973 (no. 1330-16563) . Note also
the well developed beach ridges north of the river.
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than those of northern Califarnia rivers {see Carlson and Harden, 197%,
Chpt. 9, this report) despite the fact that the drainage areas of the
jatter are about an order of magnitude smallexr than those of the Rio .
Balsas and the Rio Grande de Santiago. Direction of surface transport

as interpreted from the imagery showing summer plumes seems to be ) .
generally southward, which-is the opposite of the reported summer drift. =~
Drift currents are generally toward the south and southeast during

winter and toward the northwest during summer (Reimnitz, 1968, Roden,
1964) . However, current data are Sparse, and southerly currents may not
be abnormal for Septenmber.

Imagery obtained during December of 1972 and 1973 shows fairly
distinct plumes at river mouths. The amount of suspended sediment
visible on December imagery appears to be roughly the same as during
September. Since the rainy season does not usually extend into the
winter, this phenomenon may be due to Ffactors other than seasonal
rainfall variations and remains unexplained. We do not have sufficent
imagery to datermine the variation of plume size and shape before,
during, and after the summer rains.,

During April, bands of suspended matter appear more diffuse, but
cover broader areas than in mid-September. The concentration of
suspended matter during this time may be due to planktonic activity
rather than toc river discharge. )

Imagery covering the Rio Balsas delta shows channel patterns which
differ somewhat from those observed by Reimnitz and Gutierrez-Estrada
(1969; Fig. 5}. The easternmost tributary empties into the ocean west
of its former mouth and the most westarly branch of the western distribu-
tary has been sealed off. Other shifts in the channel further upstrean
can also be observed. This may be related to construction activity on
a dam, or to harbor dredging, which recently began. Comparison of the
aerial photography and ERTS imagery also seems to show that some coastal
erosien has taken place in recent years in the western part of the delta.
This interpretation recently has been confirmed by conversations with
Dr. A. Ayala-Castafiares and Dr. R. Lankford (oral commun., 1974) in which
they reported that 40-60 m/year of coastal retreat has been measured.

Imagery of the coastal region north of the mouth of the Rio Grande
de Santiago shows striking parallel lineations (Fig. 2)}. These bands
represent former beach lines approximately parallel to the present
coastline. Places where the ridges trend at angles to the present beach
are presumably those where the coastline has been realigned due to changes
in the oceanographic and/or sediment supply regime. Curray and others
(1969), ascribe their formation to the emergence of longshore bars to
become new beach ridges. Former beaches thus become abandoned ridges, and
lagoons between them are eventually filled. Areas of parallel beach ridges
have alsc been described for the Rio Balsas delta (Reimnitz and Gutierrez-
Estrada, 1969), but they are spaced too closely to be discernable on ERTS
imagery. - e
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CHANGES N CHAKNNEL PATTERN
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{BASED ON AERIAL PMOTOGRAPHS
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Figure 5. Changes in channel pattern and coastal conf;guratlon, compiled
from (A) aerial photographs taken over a period of 17 years
(1945-1962) - taken from Reimnitz and Gutierrez-Estrada
(1969), and (B) ERTS imagery obtained September 19, 1972
{no. E-1058-16451). Alsc shown (A} is beach-ridge lineation.
Note gravel rldge, which probably is contemporaneous with

| the time at which the Boca de Petacalco was active, and
location of shell sample, collected at a depth of 5 m below
the oldest beach rldge
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In conclusion, ERTS imagery of the coastal zone of west-central
Mexico may provide useful information about coastal morphology and
disperal of suspended sediment. However, more imagery and concurrent
meteorological and oceanographic data must be obtained befeore meaningful
interpretations can be made.
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Conclusions

ERTS imagery provides the synoptic, large area coverage important
in the study of regional coastal zone problems. Knowledge gained from
ERTS will be useful in control action vital in the event of large oil
spills along the west coast hetween the port of origin in Prince William
Sound and the port of destination be it Seattle, Portland or San
Francisco-Oakland. The imagery is of sufficient resclution to allow the
monitoring of plumes of suspended sediment which are discharged from
the major west coast rivers. The dispersal patterns of these suspended
sediments provide important details about movements of nearshore watexrs
and transport of suspended matter introduced from natural or man-made
Sources, knowledge that is important for sediment budget studies. These
studies are needed to properly locate waste effluent dischargers, to
determine "safe" dump sites for dredge spoil, and to better understand
erosional and depositional processes which will affect ceastal construction
and harbor dredging projects. In addition, knowledge of the coastal
currents is of great importance to ‘the marine biologists studying
dispersal of larvae, fish roe, plankton and other marine orgahnisms that
have important roles in the food chain.

’

The 18-day cycle of ERTS imagery.is useful for seasonal studies
of circulation of coastal water. However, the rapid changes in the
marine environment that result from severe storms would only be observed
by ERTS fortuitously. .
Resolution of ERTS imagery is less than 50 meters for linear
features and is therefore useful to the geologist in reconaissance
mapping of large areas. This large areal coverage often can provide
a perspective that will permit delineation of faults or other lineaments
that are not observable on large scale aerial photographs. However,
the limited resolution of ERTS imagery restricts its use in geologic
mapping to that of a useful tool adjunct to conventional aerial
photography.

All four bands of the multispectral scanner are valuable, but
for different purposes. Band seven (0.8-1.1 um) most clearly delineates
water and land boundaries and is the most useful for distinguishing
geologic features. Band four (0.5-0.6 um) hecause of its better water
penetrating capability provides the most complete picture of plumes
of turbid river water discharged into ocean water. Band five (0.6-0.7
pm) , however, is superior to four in delineating circulation patterns
when the turbidity level is extremely high as is common in estuaries or
at the mouths of rivers in flocd. Band five also shows the best enhancement
of snow boundaries. Band six (0.7-0.8 um) was used the least in our

.
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studies. However, when used in conjunction with the other three bands
it sometimes provided reinforcement to suspended sediment patterns seen
_on bands four and five in that it allowed us to determine the exact
effluent point of plumes of water when the turbidity was very high and
the effluents were relatively close together. '
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